

CATALOGUE
HYDRAULICS 12

Contents

Description	Туре	Size	Page
Check valves			
Modular check valves	VP-NV	6,10	1.1.1-1.1.2
In line check valves	NV	6,8,10,16	1.3.1-1.3.2
Modular pilot operated check valves	VP-NOV	6,10	1.5.1-1.5.2
In line double acting pilot operated check valves	NOV-4-D	4	1.7.1
In line simple acting pilot operated check valves	NOV-6-E	6	1.9.1
In line double acting pilot operated check valves	NOV-6-D	6	1.11.1
Check-Q-meter	BZV	6	1.15.1-1.15.3
Directional control valves			
	101.070	0	0.4.4.0.4.0
Solenoid operated directional control seat valves	KV-2/2	6	3.1.1-3.1.2
Automatic change-over directional control valves	PKV	10	3.3.1-3.3.2
Lever operated directional control valves	KV	6,10	3.5.1-3.5.2
Solenoid operated directional control valves	KV	6	3.11.1-3.11.4
Solenoid operated directional control valves	KV	10	3.13.1-3.13.4
Solenoid operated directional control valves	KV	16	3.15.1-3.15.4
Solenoid operated selector valves	KV-6/2	6	3.21.1-3.21.2
Solenoid operated selector valves	KV-6K/2	6	3.23.1-3.23.2
Solenoid operated selector valves	KVV	6	3.25.1-3.25.2
Solenoid operated selector valves	KV-6/2	10	3.27.1-3.27.2
Solenoid operated selector valves	KVC-3/2	10	3.29.1-3.29.2
Solenoid operated selector valves	KV-6/2	16	3.31.1-3.31.2
Solenoid operated selector valves	KV-8/3	6	3.33.1-3.33.2
Modular solenoid operated selector valves	KVH-6/2	6	3.35.1-3.35.2
Modular solenoid operated selector valves	KVH-6/2	10	3.37.1-3.37.2
Modular solenoid operated directional control valves	KVM	6	3.41.1-3.41.8
Pressure control valves			
Direct operated pressure control valves	VVP	6,10	5.1.1-5.1.2
Pilot operated pressure control valves	RT	6,10	5.3.1-5.3.2
Modular pilot operated pressure control valves	VP-RT	6,10	5.5.1-5.5.2
low control valves			
Modular throttle/check valves	VP-NDV	6,10	7.1.1-7.1.2
2-way pressure compensated flow control valves	TVD	6	7.3.1-7.3.2
Flow dividers	DTP	6,10	7.5.1-7.5.2
3-way pressure compensated flow control valves	TVTC	6	7.7.1-7.7.2
3-way pressure compensated flow control valves-cartridge	TVTPB	6,10	7.9.1-7.92
3-way pressure compensated proportional flow control valves	TVTPP	6,10	7.11.1-7.11.2
Electric and electronic components			
Pressure switches	TS, VP-TS	4,6,10	11.1.1-11.1.4
Solenoids	MR	Ø45, Ø60	11.3.1-11.3.2
Control lever with switches	KRSS	ν+3, ν 60	11.5.1
Amplifiers for proportional solenoids	R59		11.7.1
Connecting components			
	DD KV	6 10 16	15 1 1 15 1 0
Subplates Multi-station manifolds	PP-KV	6,10,16	15.1.1-15.1.2
	BP BO	6,10	15.3.1-15.3.3
	EV, EP, BO	6,10	15.5.1-15.5.8
Stacking elements	24, 21, 20		
	24, 21, 30		

Rights to alterations are reserved.

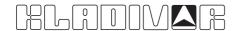
KLADIVAR ŽIRI,

tovarna elementov za fluidno tehniko, d.d. SI, 4226 ŽIRI, Industrijska ul. 2, p.p. 14 Telefon: +386 (0)4 51 59 100 Telefax: +386 (0)4 51 92 234 http://www.kladivar.si E-mail: info@kladivar.si

Note

All documents and other technical information from KLADIVAR iri d.d. and authorized distributors provide product options for further investigation by users having technical expertise. Before you select or use any product it is important that you analyze all aspects of your application and review the information concerning the product in the current product catalogue. Due to the variety of operating conditions and applications for these products, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety requirements and environmental requirements of the application are met.

In case of any indistinctness please contact manufacturer.


Opozorilo

Vsi dokumenti in druge tehnične informacije, izdani s strani KLADIVAR Žiri, d.d. in pooblaš čenih distributerjev, opisujejo možnost izbire proizvodov, če ima uporabnik strokovno znanje in izkušnje. Preden izberete ali uporabite proizvod, analizirajte način uporabe in upoštevajte informacije v tem katalogu. Zaradi raznolikosti pogojev delovanja in uporabe je uporabnik na osnovi lastne analize in testov samostojno odgovoren za končno izbiro proizvoda in s tem zagotavljanje njegove funkcije ter upoštevanje varnostnih in okoljskih predpisov.

V primeru nejasnosti se posvetujte s proizvajalcem.

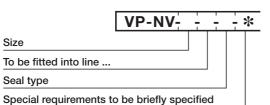
Catalogue: Hydraulics 12
Catalogue No.: HK12 - 03.05
Design: Tone Pintar
Photo: Franci Temelj


CHECK VALVE type VP-NV

- NS-6, 10
- to 350 bar
- to 100 l/min
- Connecting dimensions to ISO 4401
- For vertical stacking sandwich plate design
- Free hydraulic fluid flow in one direction

VP-NV-6, VP-NV-10

Description of operating


Check valves type VP-NV permit the hydraulic fluid flow in one direction, with a tight-off in the opposite direction. Sandwich plate design - for vertical stacking

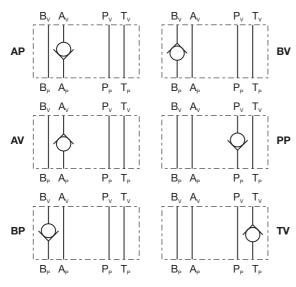
These valves consist of a housing (1), poppet (2), and a spring (3). A poppet valve can be fitted into the line P,T,A or B. It serves for shutting off the hydraulic fluid flow in one direction, permitting a free flow in the opposite direction. This is made possible by the poppet (2) which provides positive seating. The hydraulic fluid flow under cracking pressure 0,4 bar causes the poppet to lift, thus freeing the flow. In the opposite direction, the spring (3) pushes the poppet (2) against the seat, shutting the hydraulic fluid flow

Ordering code

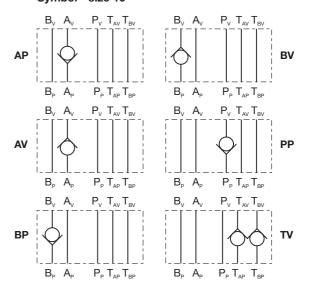
Size

Seal type

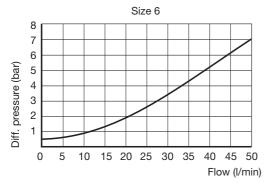
Size 6 = 6Size Size 10 = 10

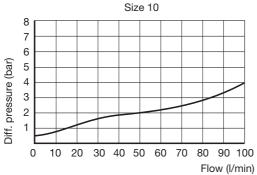

To be fitted into line ... Flow direction

 $A_P - A_V$ = AP B_v-B_p = BV = AV = PP $A_v - A_p$ $P_P - P_V$ = BP =TV $B_P - B_V$ T_v-T_p


Seal type

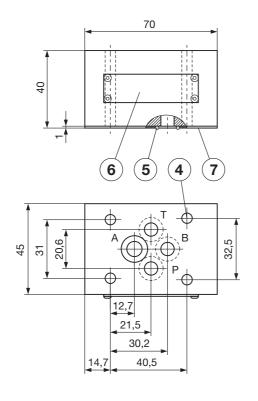
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 and ISO 15380) = E

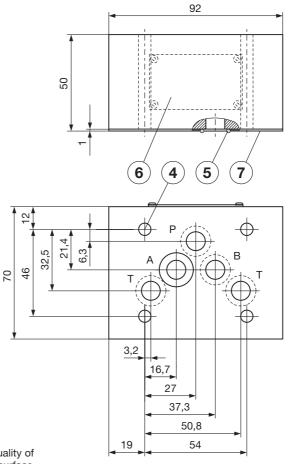

Symbol - size 6



Symbol - size 10

\triangle p - Q Performance curves (measured at t = 50 °C and v = 32 mm²/s)





Technical data

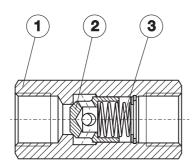
Size		6	10
Flow rate	l/min	50	100
Flow velocity	m/s	4	4
Operating pressure	bar	350	350
Cracking pressure	bar	0,4	0,4
Oil temperature range	°C	-20 to +70	-20 to +70
Viscosity range	mm²/s	15 to 380	15 to 380
Filtration	NAS 1638	8	8
Mass	kg	0,87	2,77

Dimensions (mm)

Required quality of the mating surface


- 4. Bores for fixing screws M6
- 5. O-ring 12,42x1,78
- 6. Nameplate
- 7. O-ring plate

- 6. Nameplate
- 7. O-ring plate


CHECK VALVE type NV

- NS-6,8,10,16
- to 350 bar
- to 150 l/min
- Direct in-line mounting
- Free hydraulic fluid flow in one direction

NV-6, 8, 10, 16

Description of operating

Check valve type NV permit the hydraulic fluid flow in one direction, with a tight shut-off in the opposite direction.

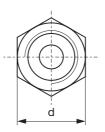
These valves consist of a housing (1), a poppet (2), and a spring (3).

Both ends of the valve housing are provided with a thread for inline mounting. The valve is built into pipelines or onto subplates via pipe connection.

Ordering code

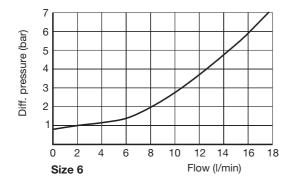
Nominal Size

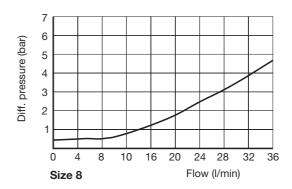
Special requirements to be briefly specified

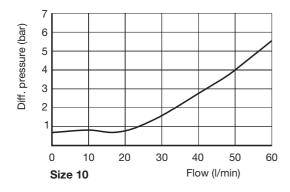

Nominal size

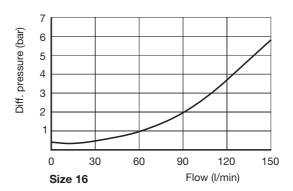
NV-6 = **6-G1/4** NV-10 = **10-G1/2** NV-8 = **8-G3/8** NV-16 = **16-G3/4** Symbol

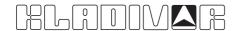
Dimensions (mm)




٦
u
19
24
30
36


Technical data

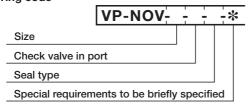

Size		6	8	10	16
Flow rate	l/min	16	35	60	150
Operating pressure	bar	350	350	350	350
Cracking pressure	See characteristic curves on page 1.3.2				
Oil temperature range		-20 to +70	-20 to +70	-20 to +70	-20 to +70
Viscosity range	°C	15 to 380	15 to 380	15 to 380	15 to 380
Filtration	mm²/s	8	8	8	8
Mass	NAS 1638	0,1	0,2	0,3	0,5
Hydraulic fluid	kg Oil HL, HLP, to DIN 51524 and HETG, HEES, HEPG to VDMA 24568 and ISO 15380				


\triangle p - Q Performance curves (measured at t = 50 °C and υ = 32 mm²/s)

CHECK VALVE type VP-NOV

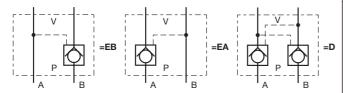
- NS-6, 10
- to 350 bar
- to 100 l/min
- Direct operated
- Connecting dimensions to ISO 4401
- Flow shut-off in both or one service line
- For vertical stacking sandwich plate design
- Height and width of the valves to ISO 7790 norms

VP-NOV-10-.., VP-NOV-6-..


Description of operating

Pilot operated check valves type VP-NOV enable the hydraulic fluid flow in the service lines to be automatically shut off and made free, respectively.

Free flow direction is always from the valve side "V" to the subplate side "P". In the opposite direction is the valve blocked for the hydraulic fluid flow. Free flow in port A in direction P to V is achieved by means of pressure in port B, and vice versa.


To assure zero leakage there is necessary to discharge ports A and B towards T in the zero position of the directional valve.

Ordering code

Size	Seal type	
Size 6 = 6	NBR seals for mineral oil	= no desig.
Size 10 = 10	HL, HLP, to DIN 51524	
	FPM seals for HETG,	= E
	HEES, HEPG to VDMA 24568	
	and ISO 15380	

Check valve in port (symbol)

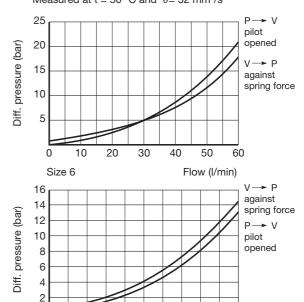
Technical data

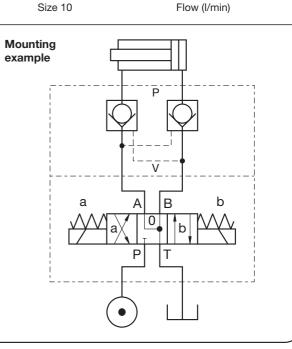
Size		6	10
Flow rate	l/min	60	100
Operating pressure	bar	350	350
Cracking pressure	bar	1	0,5
Area ratio		1:3,9	1:3,6
Oil temperature range	°C	-20 to +70	-20 to +70
Viscosity range	mm²/s	15 to 380	15 to 380
Filtration	NAS 1638	8	8
Mass	kg	1,8	3,5

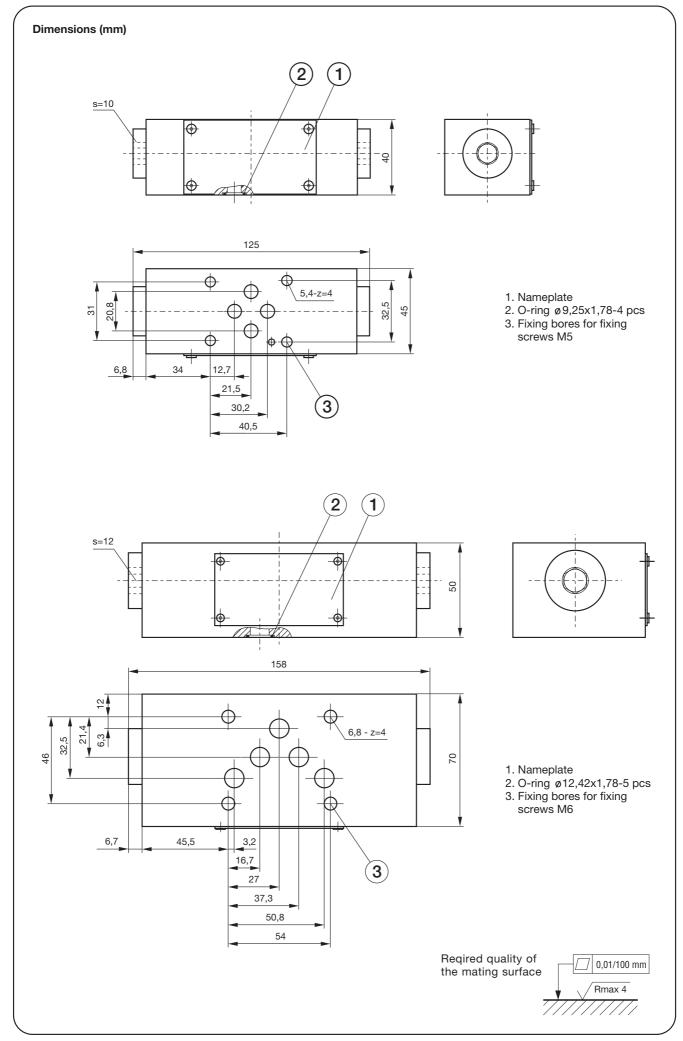
Performance curves

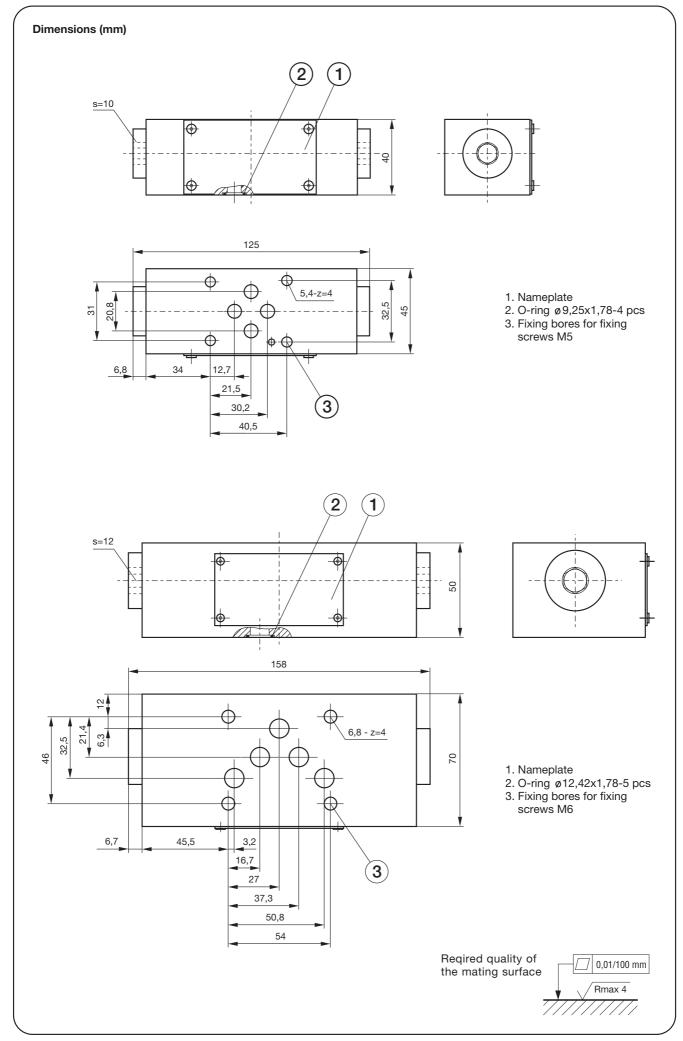
20

0


40


60


80


100

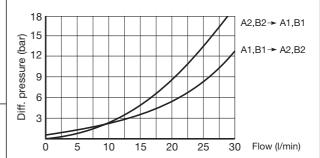
 $\Delta\,p$ - Q Performance curves of the flow in direction V to P (through check valve) and in direction P to V (check valve pilot opened with p_s =80 bar). Measured at t = 50 °C and υ = 32 mm²/s

CHECK VALVE type NOV

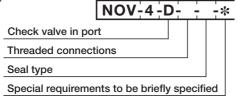
- NS-4
- to 350 bar
- to 30 I/min
- Direct operated
- Threaded connections to ISO 9974, ISO 1179
- Flow shut-off in both service lines
- Direct in-line mounting

NOV-4

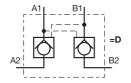
Description of operating


Direct operated check valves type NOV enable the hydraulic fluid flow in the service lines to be automatically shut-off and made free, respectively.

Free flow direction is always from the valve side A1, B1 to side A2, B2. In the opposite direction is the valve blocked for the hydraulic fluid flow. Free flow in port A in direction A2 to A1 is achieved by means of pressure in port B, and vice versa.


To assure zero leakage there is necessary to discharge ports A1 and B1 towards T in the zero position of the directional valve.

Performance curves

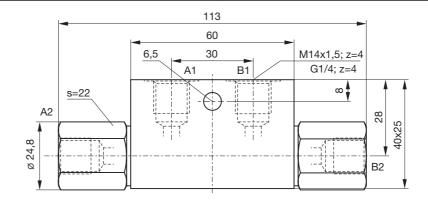

 Δ p - Q Performance curves of the flow in direction A1,B1 \rightarrow A2,B2 (through check valve) and in direction A2,B2 \rightarrow A1,B1 (check valve pilot opened). Measured at t = 50 °C and υ = 32 mm²/s

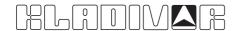
Ordering code

Check valve in port (symbol)

Threaded connections

M14x1,5 = MG 1/4 = G


Seal type


NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

Technical data

Size		4
Flow rate	l/min	30
Operating pressure	bar	350
Cracking pressure	bar	1
Area ratio		1:4
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Filtration	NAS 1638	8
Mass	kg	0,6

Dimensions (mm)

CHECK VALVE type NOV

- NS-6
- to 350 bar
- to 35 l/min
- Direct operated
- Threaded connections to ISO 1179
- Flow shut-off in one service line
- Direct in-line mounting

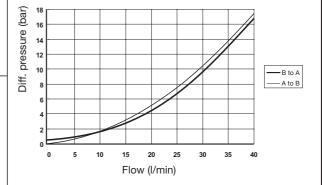
NOV-6

Description of operating

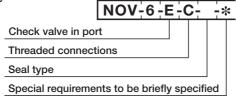
Pilot operated check valves type NOV enable the hydraulic fluid flow in the service lines to be automatically shut-off and made free, respectively.

Free flow direction is from the valve port B to port A. In the opposite direction the valve is blocked for the hydraulic fluid flow. Free flow from port A to port B is achieved by means of pressure in port Z.

To assure zero leakage there is necessary to discharge ports B and Z towards T in the zero position of the directional valve.


Performance curves

 $\Delta\,p$ - Q Performance curves of the flow in direction


B - A (through check valve) and in direction

A →B (check valve pilot opened).

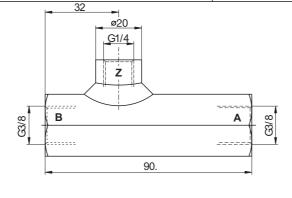

Measured at t = 50 °C and υ = 32 mm²/s

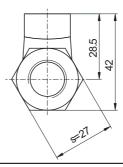
Ordering code

Check valve in port (symbol)

Threaded connections

Port A, B ...G3/8 Port Z ...G1/4 = C


Seal type


NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

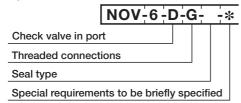
Technical data

Size		6
Flow rate	l/min	35
Operating pressure	bar	350
Cracking pressure	bar	0,5
Area ratio		1:4
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Filtration	NAS 1638	8
Mass	kg	0,4

Dimensions (mm)

CHECK VALVE type NOV

- NS-6
- to 350 bar
- to 60 l/min
- Direct operated
- Threaded connections to ISO 1179
- Flow shut-off in both service line
- Direct in-line mounting


NOV-6

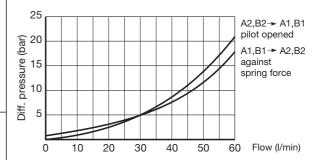
Description of operating

Direct operated check valves type NOV enable the hydraulic fluid flow in the service lines to be automatically shut-off and made free, respectively.

Free flow direction is always from the valve side A1,B1 to side A2,B2. In the opposite direction is the valve blocked for the hydraulic fluid flow. Free flow in port A in direction A2 to A1 is achieved by means of pressure in port B, and vice versa. To assure zero leakage there is necessary to discharge ports A1 and B1 towards T in the zero position of the directional valve.

Ordering code

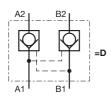
Seal type

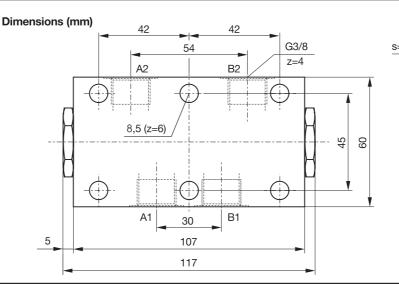

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = $\bf E$ and ISO 15380

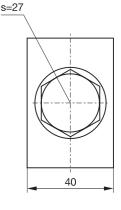
Threaded connections

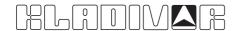
G 3/8 = G

Performance curves

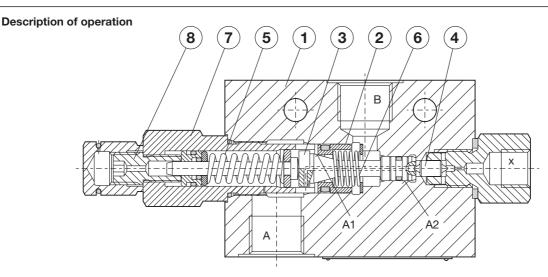

 Δ p - Q Performance curves of the flow in direction A1,B1 — A2,B2 (through check valve) and in direction A2,B2 — A1,B1 (check valve pilot opened). Measured at t = 50 °C and υ = 32 mm²/s




Technical data


Size		6
Flow rate	l/min	60
Operating pressure	bar	350
Cracking pressure	bar	1
Area ratio		1:3,9
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Filtration	NAS 1638	8
Mass	kg	1,5

Check valve in port (symbol)



CHECK-Q-METER type BZV

- NS 6
- to 350 bar
- to 60 I/min
- Direct operated
- Hermetically sealing at closed flow path
- Minimum pressure losses when the medium flows from port A towards port B
- When the medium flows from port B towards port A the speed of load lowering is controlled with respect to the medium flow rate supplied to the opposite side of the hydraulic motor or cylinder.
 With operating cylinders the characteristic ratio of surface areas must be taken into account
- For building into pipe-lines
- Threaded connections to ISO 9974, ISO 1179

BZV-6-D. BZV-6-E

The check-Q-meter is used for maintaining constant speed during the lowering of loads by means of hydraulic cylinders or hydromotors in the systems where load changes with time. It prevents uncontrolled falling of load if defects occur in the pipeline between the directional control valve and the check-Q-meter or if there is no pilot pressure. When it is installed in combination with a directional control valve with negative change-over in intermediate positions, it has the function of a holding valve. If the load on hydraulic cylinders or hydromotors does not change the sign, a single check-Q-meter must be used.

The check-Q-meter consists of a housing (1), main poppet (2), auxiliary spool (3), pilot poppet (4), spring (5), insert housing (7) and setting screw (8).

Technical data

Flow rate		l/min	60
Operating pressure	spring 200 bar	bar	150
	spring 350 bar	bar	270
Pilot pressure	spring 200 bar	bar	4 to 50
	spring 350 bar	bar	6 to 85
Cracking pressure		bar	2,2
Pilot ratio	R=A2/A1-A2		4,25
Oil temp. range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Filtration		NAS 1638	8
Mass	BZV-6-E	kg	1,5
	BZV-6-D	kg	2,4

Lifting the load

The hydraulic fluid flows from port A towards port B with minimum pressure losses, the main poppet (2) being lifted.

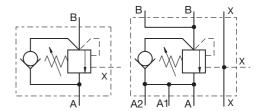
In the case of a pressure drop and an interruption in the hydraulic fluid supply to port A, the main poppet (2) closes, holding the load in position.

Lowering the Load (see also the hydraulic circuit diagram with differential cylinder, page 11.4.2). With the directional control valve in position (a) the hydraulic fluid flows to the annulus side of the hydraulic cylinder, which provokes a certain pilot pressure on the auxiliary spool (3). The check-Q-meter opens and thereby a free hydraulic fluid flow from port B towards port A occurs, when the main poppet (2) leans against the insert housing (7), where as the auxiliary spool (3) still performs a part of the controlled move which depends on the quantity of the hydraulic fluid supplied in a unit of time to the annulus side of the operating cylinder. In the opening direction, also the load pressure works on the circle of the predefined surface. The pilot pressure required for the opening of the check-Q-meter is

required pilot press. =
$$\frac{\text{safety valve setting - load pressure}}{4.25}$$

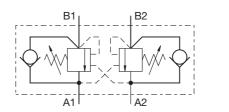
In case that the hydraulic cylinder piston starts to move faster than permitted by the hydraulic fluid supply, the pilot pressure on the port X drops and the auxiliary spool (3) under the effect of spring (5) moves in the valve closing and shutting-off direction, respectively.

Because of the reduction in flow cross-section the resistances increase, which causes an increase in the pilot pressure and thereby a larger opening of the check-Q-meter. In this manner, the check-Q-meter is continuously balanced during lowering. The spring (5) setting force must be set at least 1.3 -times higher than the maximum force due to the operating pressure (pressure due to load):

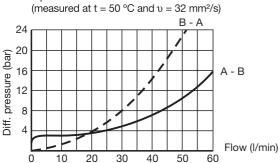

maximum operating pressure =
$$\frac{350 \text{ bar}}{1.3}$$
 = 270 bar

Symbol type Control range Mounting method Seal type Special requirements to be briefly specified

Symbol type


BZV-6-E = E

single check-Q-meter



BZV-6-D = D

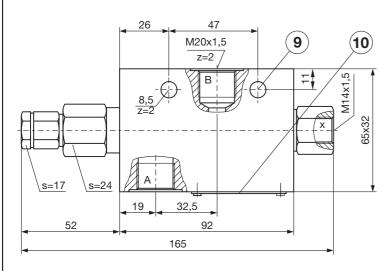
double check-Q-meter

Δp - Q Performance curves (measured at t = 50 °C and ν)

Control range

from 60 to 200 bar = 200 from 100 to 350 bar = 350

Mounting method

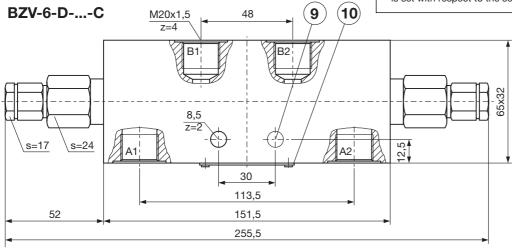

building into pipeline (M20x1,5 / M14x1,5) = C building into pipeline (G3/8) = CG building direct on hydraulic cilinder = CDG

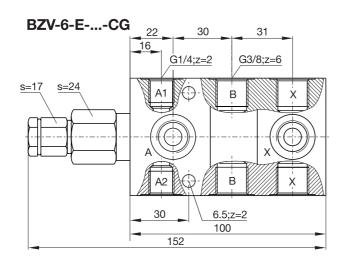
Seal type

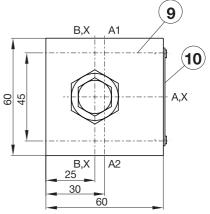
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

Dimensions (mm)

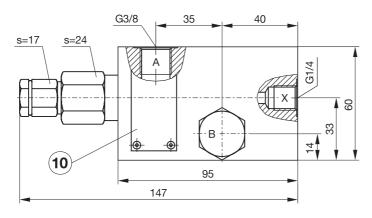
BZV-6-E-...-C

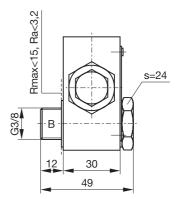

Circuit diadgram with hydraulic cylinder

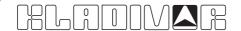



Because of the multiplication of pressure in hydraulic cylinder by the difference of surface areas

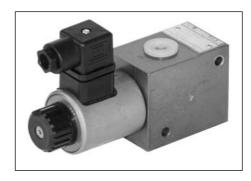
$$p_2 = p_m + p_1 x \phi$$
 $\phi = \frac{A1}{A2} > 1$


it is recommended to protect the circuit by means of a pressure relief valve, the cracking pressure of which is set with respect to the selected spring (5) in the

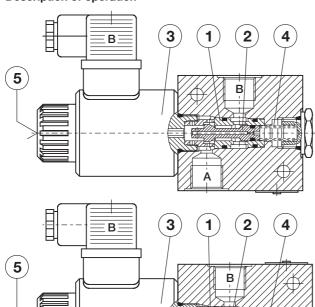


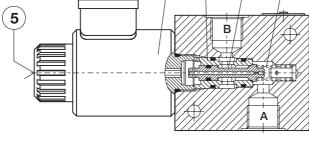


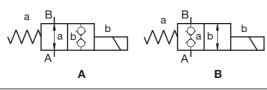
BZV-6-E-...-CDG



- 9. Fixing screw 10. Nameplate


2/2-WAY DIRECTIONAL VALVES type KV

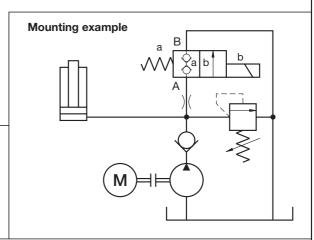

- NS-6
- to 210 bar
- to 30 I/min
- Direct in-line mounting
- Threaded connections to ISO 9974, ISO 1179
- Hermetically sealing at closed flow path
- No STICK-SLIP effect even after a prolonged dwell time under pressure
- Direct operating by solenoid
- Plug-in solenoid connector to ISO 4400


KV-2/2-6-S

Description of operation

Symbols (spool type)

Directly-operated directional seat valves Type KV are used for the control of direction of hydraulic fluid.


KV-2/2-6-S-A-...

In the start control position a the return spring (4) holds the ball (2) in its open position, thus freeing the flow path between ports A and B. The change-over into the control position b is accomplished by energizing the solenoid (3), whereby the ball (2) is pushed against the seat (1). The hydraulic fluid on port A is under pressure.

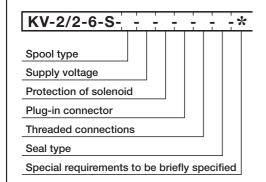
KV-2/2-6-S-B-...

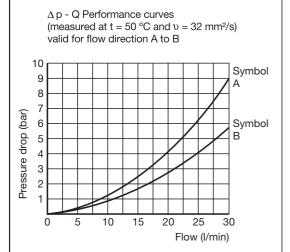
The hydraulic fluid on port A in the start control position a is under pressure. The return spring (4) pushes the ball (2) against its seat (1). The change-over to the control position b is performed by energizing the solenoid (3), thus freeing the flow path between ports A and B.

The change-over can also be done manually by pressing the emergency hand operator (5).

Technical data

Hydraulic


Size		6
Flow rate	l/min	30
Operating pressure	bar	210
Oil temperature range	°C	-20 to +70
Viskosity range	mm²/s	15 to 380
Filtration	NAS 1638	8
Mass	kg	2,2


Electrical

Supply voltage	V	12, 24, 48, 110, 230 DC or AC
Power	W	29*
Intermittence		continious
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	min ⁻¹	250

^{*-12} V supply voltage - 36W

Ordering code

Supply voltage

direct voltage 24 V = no design. 12 V = 12 DC 48 V = 48 DC 110 V = 110 DC 220 V = 220 DC

alternating voltage 12 V = 12 AC24 V = 24 AC

48 V = 48 AC 110 V = 110 AC 230 V = 230 AC

Alternating voltage solenoids are fitted with a bridge rectifier. With solenoids of over 48 V an earthing clamp $\frac{1}{2}$

to DIN EN 175301-8003 must be connected.

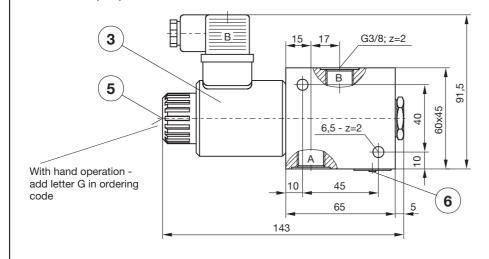
* To fulfil EMC (89/336/EEC) a capacitor must be built in (see 10.1.1)

Protection of solenoid

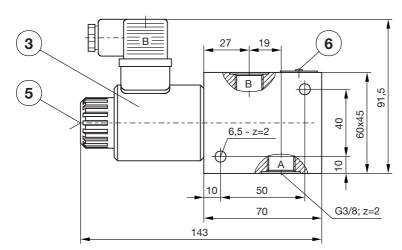
- protection IP 65 to DIN EN 60529 = no design.
- adverse climatic conditions = 2

Plug-in connector

- without signal lamp = no design.
- with signal lamp = L


Threaded connections

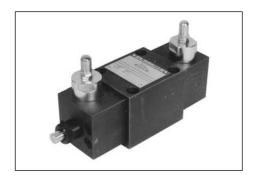
- G 3/8 = no design.


Seal type

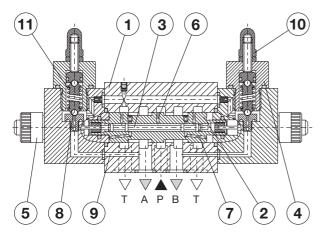
- NBR seals for mineral oil HL, HLP, to DIN 51524 = no design.
- FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

Dimensions (mm)

KV-2/2-6-S-A-MR


KV-2/2-6-S-B-MR

- 3. Solenoid "b" MR-045
- 5. Emergency hand operator
- 6. Nameplate


4/2-WAY DIRECTIONAL VALVES type PKV

- NS 10
- to 210 bar
- to 60 I/min
- Indirect, hydraulic operation
- Connecting dimensions to ISO 4401
- Provision of pressure setting for change over
- Automatic change over from the other operating position
- Connection to subplate type PP-KV-10
- Connection to subplate with pressure relief valve type PP-PKV-10

PKV-10

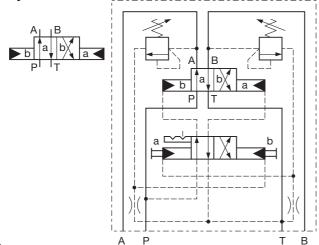
Description of operation

Indirectly, hydraulic - operated directional valves type PKV are used to control the hydraulic fluid flow direction by an automatic change - over.

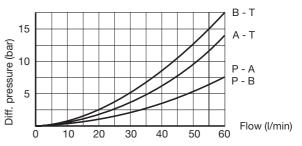
These valves consist of a housing (1), a control spool (2), a change - over piston (3), and two pressure relief valves (4).

When the change - over piston (3) and the control spool (2) are in the neutral position no change - over will occur, and the valve must be shifted to the appropriate position using the emergency hand operator (5). In this way the hydraulic fluid flow through the bores (6) and (7) to the front side of control spool (2), changing - over from the position P - B to the position P - A. The control spool (2) rests in this position until the pressure in the line "A" increases to the value set on the pressure relief valve (4). The pressure rise occurs the operating cylinder reaches the extreme position. At this moment the pilot poppet (8) will lift, freeing the flow of the hydraulic fluid from the channel (9) via the pressure relief valve (4) to the change - over piston (3). The flow shifts the piston to the right and corresponding flow ways are freed, allowing the control spool to change - over to the position P -B. From here on the process is automatic. The pressure setpoint valve for the valves change - over is adjusted on the pressure setting element (10) by which the spring (11) can be

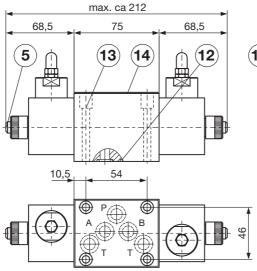
Ordering code PKV - 10 --* Seal type

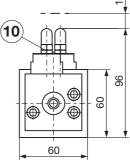

Special requirements to be briefly specified

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 and ISO 15380

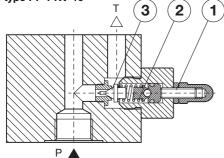

Technical data

Size		10
Flow rate	l/min	60
Operating pressure P,A,B	bar	to 210
Т	bar	to 160
Min. press. req. for autom. change over	bar	20
Minimum flow rate	l/min	0,8
Change over pressure	bar	20 to 200
Viscosity range	mm²/s	15 to 380
Oil temperature range	°C	-20 to+70
Mass	kg	3,2
Filtration	NAS 1638	8

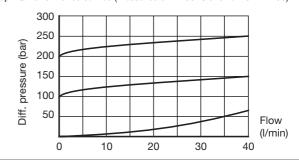


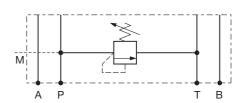


 \triangle p - Q Performance curves (measured at t = 50 °C and \mathcal{V} = 32 mm²/s)


Dimensions (mm)

- 5. Emergency hand operator
- 10. Setting elements with protective cap
- 12. O ring 12x2
- 13. Fixing screws: 4 pcs M6x55 to DIN EN ISO 4762 -10.9 tightening torque Md = 14 Nm
- 14. Nameplate

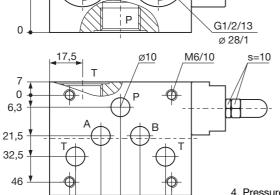

Subplate type PP-PKV-10


Subplate type PP-PKV-10 is used for fitting the directional valve type PKV-10 into hydraulic system where additional maintaining of maximum pressure is required.

The subplate consist of a housing and a pressure relief valve. The latter includes a pilot poppet (1), a spring (2), and a setting element (3). The pressure valve is adjusted by settyng element (3) which is used for spring setting (2).

Δp - Q Performance curves (measured at t = 50 °C and υ = 32 mm²/s)

Symbol



Dimensions (mm)

60

48

27,5

16,7

51,5

75

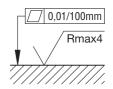
G1/4/14

20/1

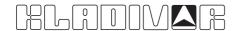
37.5

08 47/1 08 93/4/19 09 28/1 15.5

5

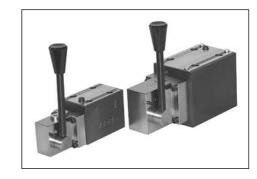

4

6

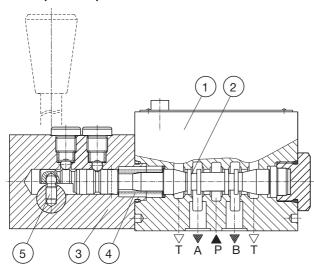

4. Pressure relief valve

- 5. Bores for subplate fixing, M6/10
- 6. Bores for direction valves fixing, M6/10

Max. pressure setting: 200 bar



Required quality of the mating surface

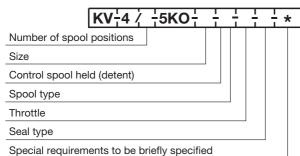

4/2, 4/3-WAY DIRECTIONAL VALVES

- NS 6, 10
- to 350 bar
- to 60 I/min, to 100 I/min
- Direct mechanical operation (by means of a lever)
- Connecting dimensions to ISO 4401

KV-4/3-5KO-6-R, KV-4/3-5KO-10-R

Description of operation

Directional valves type KV with direct mechanical operation by means of a lever control the direction of the hydraulic fluid medium flow.


These directional valves consist of a housing (1), control spool (2), control mechanism (3), and return spring (4). In 4/3-way directional valves the centre position of the control spool is the neutral position. The change-over to one of the operating positions "a" or "b" is done by moving the operating pin lever (5) in such a manner that its acts on the control spool (2) so as to clear corresponding flow ways and establish relevant links between ports, A, B, P, and

On ceasing to apply force to the control mechanism (3), the return spring (4) push the control spool into the neutral position.

There are two types of operation:

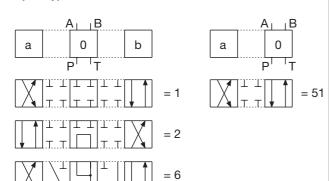
- with control spool not held in the operating position (the control spool returns to neutral position on ceasing to apply force to the control mechanism type KV-./..-R)
- with control spool held (detent) in the operating position (the control spool remains in the operating position on ceasing to apply force to the control mechanism lever type KV-../..-RA).

Ordering code

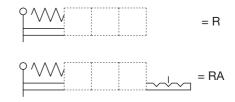
Number of control spool position

two positions = 2 three positions = 3 Size

size 6 = 6 size 10 = **10**


Throttle

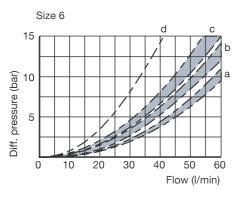
without throttle in "P" line	=	no desig.
throttle 0,8 mm dia	=	D08
throttle 1,0 mm dia	=	D10
throttle 1,2 mm dia	=	D12

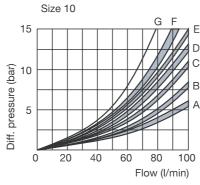

Seal type

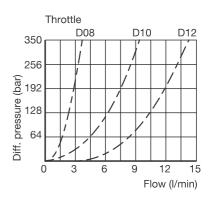
NBR seals for mineral oil HL, HLP to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = $\bf E$ and ISO 15380

Spool types

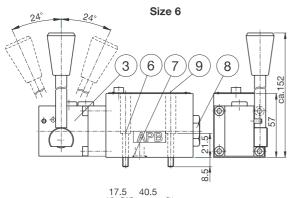
Control spool held

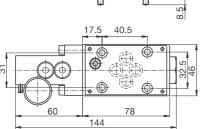



Technical data


Size			6	10
Flow rate	Flow rate		60	100
Operating pressure	Operating pressure P, A, B		350	
	Т	bar	16	60
Filtration		NAS 1638	8	
Fluid temperature range		°C	-20 to +70	
Viscosity range		mm²/s	15 to 380	
Mounting position			optional	
Mass		kg	1,35	3.3

Spool	P-A	Р-В	A-T	В-Т	P-T
1	b,D	b,D	с,В	c,C	ı
2	с,В	с,В	c,A	c,A	d,G
3	c,F	c,E	a,B	a,A	-
51A	c,D	b,D	c,C	а,В	-


 $\Delta\,p$ - Q Performance curves (measured at t = 50 °C and υ = 32 mm²/s)



Dimensions (mm)

9.5 • 9 2 186

- 3. Control mechanism on side "a" 4/3 valves
- 4/2 valves, spool types 51A
- 6. Fixing screws 4 pcs M5 x 30 to DIN EN ISO 4762-10.9 (by special order) Required tightening torque Md = 9Nm 7. O-ring 9.25 x 1.78 8. Valve cap

- 9. Nameplate

- 3. Control mechanism on side "a"
- 4/3 valves
- 4/2 valves, spool types 51A
 6. Fixing screws 4 pcs M6 x 60 to DIN EN ISO 4762-10.9
 (by special order) Required tightening torque Md = 15Nm
 7. O-ring 12,42 x 1,78
 8. Valve cap

Size 10

7

9

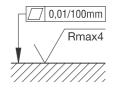
8

50.

ca.164 83

3

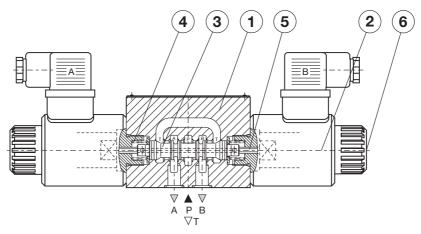
6


- 9. Nameplate

Cartridge throttle

If flow rates greater than prmissible occur during change-over, a cartridge throttle must be fitted into Pline of the directional valve.

Required quality of the mating surface


4/2 and 4/3 - WAY DIRECTIONAL VALVES type KV

- NS 6
- to 350 bar
- to 75 I/min
- Direct operation by solenoid
- Connection diagram and connecting dimensions to ISO 4401, DIN 24340
- Plug-in connector for solenoids to ISO 4400
- 5-chamber model with good spool guidance
- Optimized flow paths for low losses of pressure
- Adjustment of the switching time
- Wet pin solenoid with interchangeable coil
- Manual emergency control
- Protection of solenoid IP 65 to DIN EN 60529
- Fulfil EMC (89/336/EEC)

KV-4/3-5K0-6

Description of operation

Directional valves type KV with direct solenoid operation control the direction of the hydraulic medium flow.

These directional valves consist of a housing (1), a control spool (3), and one solenoid (2) with two return springs (4) in 4/2-way directional valves, and two solenoids (2) with two return springs (4) in 4/3-way directional valves. In 4/3-way directional valves the centre position of the control spool is the neutral position. The change-over to the operating position (a) and (b) is done by energising the solenoids (2) "a" and "b" respectively, whereby the solenoid plunger acts on the control spool (3) via the operating pin (5), thus clearing the corresponding flow ways and establishing relevant links between ports A, B, P, and T. For selection of spool types refer to page 3.6.2.

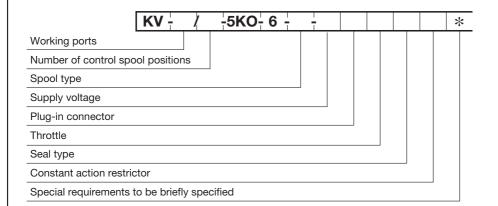
When the solenoid (2) is de-energised, the control spool (3) is returned to its neutral position by the return spring (4). The change-over can be done manually by pressing the emergency hand operator (6).

KV-4/2-5KO-6-81

Directional valve with two operating position, two solenoids without springs allows the control spool to be held in the operating position (detent). The control spool remains in the operation position also when the solenoids are de-energised.

Technical data

Size		6	
Flow rate		see p-Q curves, page 3.6.3	
Operating pressure ports	s P,A,B	bar	350
Operating pressure port	bar	210	
Oil temperature range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Mounting position		optional	
Mass	4/2	kg	1,9
	4/3	kg	2,7
Filtration		NAS 1638	8


Electrical

Supply voltage	direct or	V	12, 24, 48
	alternating		110, 230
Power		W	29*
Switch-on time**		ms	50 to 80
Switch-off time**		ms	30 to 55
Switching frequency		1/h	15 000
Ambient temperature		°C	to +50
Coil temperature		°C to +180	
Duty cycle	Duty cycle continious		nious
* 7			.,

 $^{^{\}star\star}$ -The switching-on and off times apply to 24 V DC solenoids

^{* -12}V supply voltage - 36 W

Ordering code

If flow rates greater than permissible occur during changeover, a cartridge throttle must be fitted into P-line of the directional valve.

Working ports

3 working ports = 3

4 working ports = 4

Plug-in connector

without signal lamp = no design

with signal lamp = L

Number of control spool positions

two positions = 2 three positions = 3

Throttle

without throttle in "P" line = no desig.
throttle 0,8 mm dia = D08
throttle 1,0 mm dia = D10
throttle 1,2 mm dia = D12

Supply voltage

 direct voltage
 alternating voltage

 24 V = no desig.
 12 V = 12 AC

 12 V = 12 DC
 24 V = 24 AC

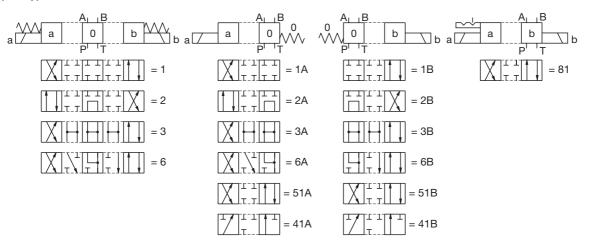
 48 V = 48 DC
 48 V = 48 AC

 110 V = 110 DC
 110 V = 110 AC

 230 V = 230 DC
 230 V = 230 AC

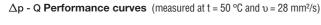
Seal type

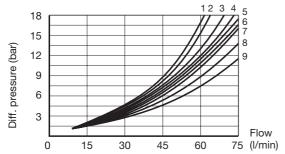
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = $\bf E$ and ISO 15380


- Alternating voltage solenoids are fitted with a bridge rectifier.

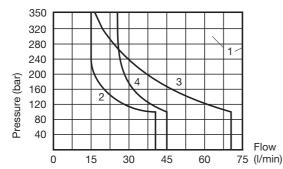
- With solenoids of over 48 V an earthing clamp (≟) to ISO 4400 must be connected.
- * To fulfil EMC (89/336/EEC) a capacitor must be built in (see 10.2.2)

Constant action restrictor

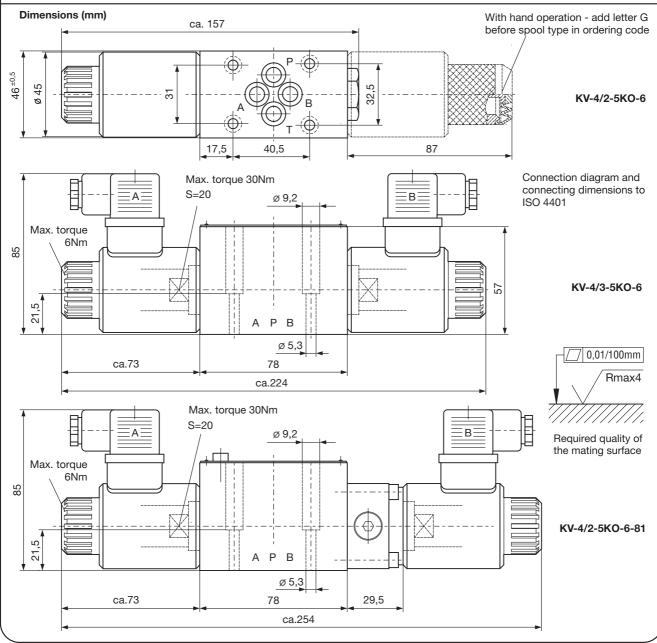

Without restrictor = no desig. Restrictor 0,3 dia. = UD


Spool types

- Port T in the valves with spool type 41A and 41B to be used as lekage line. Important note:


Valves with adjustment of the switching time - a constant or short - time static oil pressure of at least \geq 4 bar must prevail at connection T of the directional control valve to maintain the pressure in the spring chambers.

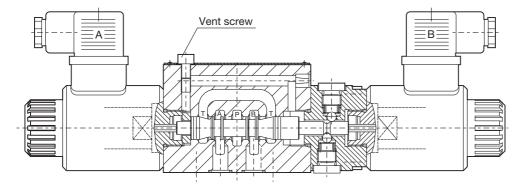
Spool	Flow path				
type	P-A	P-B	A-T	В-Т	P-T
1	8	8	6	6	-
2	5	5	4	4	1
3	8	8	7	7	-
6	5	5	9	9	-
81	5	5	1	1	-
51A, 51B	5	5	1	1	-
41A, 41B	7	7	-	-	-


p - Q Operating limits (measured at t = 50 °C and υ = 28 mm²/s)

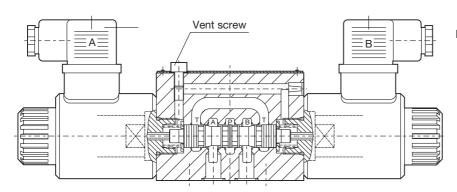
Spool type	Curve
1	1
2	4
3	3
6	3
81	1
51A, 51B	1
41A, 41B	2

The operating limits of the valve are determined at a voltage 10% below the nominal rating. The curves refer to application with symetrical flow throw the valve (P-A and B-T). In the case of asymetric flow (e.g. one part not used) reduced values may result.

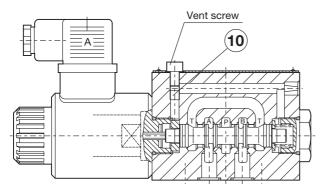
Note: For valves with adjustment of the switching time reduced values of the operating limits may result.



Function drawing



KV-4/3-5KO-6 (KV-4/2-5KO-6)


- Solenoid "a" MR-045 Solenoid "b" MR-045
- 3 Fixing screws 4 pcs M5 x 30 to DIN EN ISO 4762 -10.9 must be ordered separately Required tightening torque Md = 9 Nm
- 4 Plug-in connector "a" grey 5 Plug-in connector "b" black
- Emergency hand operator O-ring 9,25 x 1,78
- Valve cap
- 9 Nameplate
- 10 Constant action restrictor

KV-4/2-5KO-6-81

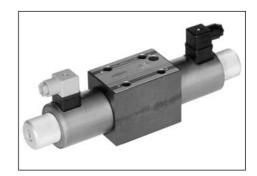
KV-4/3-5KO-6-2

KV-4/2-5KO-6-UD

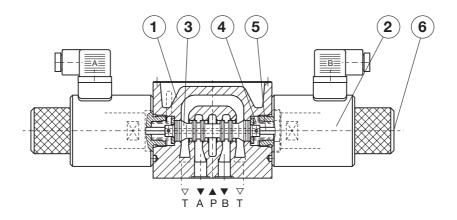
Instalation

The directional control valve must be installed horizontally (Nameplate on top). If this is not the case, the valve must be removed for venting. Unscrew the vent screw. Move the spool alternately to the switching positions a and b until no more bubbles appear at the screw hole. The oil must be visible at the screw hole. Missing oil schould be refielld with an oilcan, drop by drop. Screw in the vent screw.

A constant or short time static oil pressure of at least > 4 bar must prevail at connection T of the directional control valve to maintain the oil pressure in the spring chambers. If this is not the case, the preloaded oil volume of the restricted valve would leak into the T channel through the leakage section of the control spool shoulders.


The dampening constancy also depends on the constancy of the oil viscosity.

For this reason the dampening effect should always be adjusted with the system at operational temperature.


4/2 and 4/3 - WAY DIRECTIONAL VALVES type KV

- NS 10
- to 350 bar
- to 120 l/min
- Direct operation by solenoid
- Connection diagram and connecting dimensions to ISO 4401, DIN 24340
- Plug-in connector for solenoids to ISO 4400
- 5-chamber model with good spool guidance
- Optimized flow paths for low losses of pressure
- Adjustment of the switching time
- Wet pin solenoid with interchangeable coil
- Manual emergency control
- Protection of solenoid IP 65 to DIN EN 60529

KV-4/3-5KO-10

Description of operation

Directional valves type KV with direct solenoid operation control the direction of the hydraulic medium flow.

These directional valves consist of a housing (1), a control spool (3), and one solenoid (2) with two return springs (4) in 4/2-way directional valves, and two solenoids (2) with two return springs (4) in 4/3-way directional valves. In 4/3-way directional valves the centre position of the control spool is the neutral position. The change-over to the operating position (a) and (b) is done by energising the solenoids (2) "a" and "b" respectively, whereby the solenoid plunger acts on the control spool (3) via the operating pin (5), thus clearing the corresponding flow ways and establishing relevant links between ports A, B, P, and T. For selection of spool types refer to page 3.8.2.

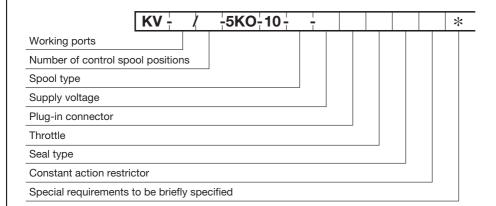
When the solenoid (2) is de-energised, the control spool (3) is returned to its neutral position by the return spring (4). The change-over can be done manually by pressing the emergency hand operator (6).

KV-4/2-5KO-10-81

Flectrical

Directional valve with two operating position, two solenoids without springs allows the control spool to be held in the operating position (detent). The control spool remains in the operation position also when the solenoids are de-energised.

Technical data


lyd	rau	lic

Size		10	
Flow rate		see p-Q curves, page 3.8.3	
Operating pressure ports	s P,A,B	bar	350
Operating pressure port T		bar	210
Oil temperature range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Mounting position		opt	onal
Mass	4/2	kg	6,5
	4/3	kg	7,3
Filtration		NAS 1638	8

Supply voltage	direct or	V	12, 24, 48
	alternating		110, 230
Power		W	45
Switch-on time		ms	70 to 95
Switch-off time		ms	40 to 80
Switching frequency		1/h	15 000
Ambient temperature		°C	to +50
Coil temperature		°C	to +180
Duty cycle	Duty cycle		nious

The switching-on and off times apply to 24 V DC solenoids

Ordering code

If flow rates greater than permissible occur during changeover, a cartridge throttle must be fitted into P-line of the directional valve.

Working ports

3 working ports = 3

4 working ports = 4

Plug-in connector

without signal lamp = no design

with signal lamp = L

Number of control spool positions

two positions = 2 three positions = 3

Throttle

without throttle in "P" line = no desig. throttle 0,8 mm dia = **D08**

throttle 1,0 mm dia = D10 throttle 1,2 mm dia = D12

Supply voltage

 direct voltage
 alternating voltage

 24 V = no desig.
 12 V = 12 AC

 12 V = 12 DC
 24 V = 24 AC

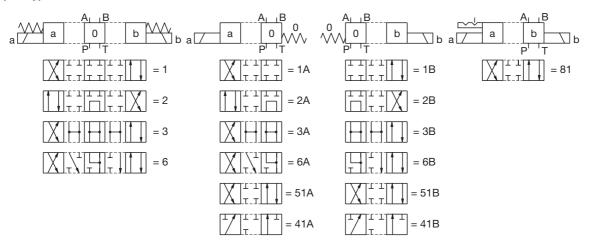
 48 V = 48 DC
 48 V = 48 AC

 110 V = 110 DC
 110 V = 110 AC

 230 V = 230 DC
 230 V = 230 AC

Seal type

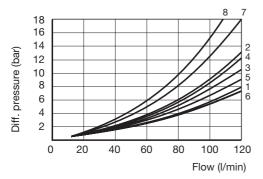
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = $\bf E$ and ISO 15380


- Alternating voltage solenoids are fitted with a bridge rectifier.

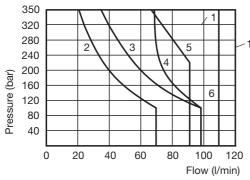
- With solenoids of over 48 V an earthing clamp (≟) to ISO 4400 must be connected.
- * To fulfil EMC (89/336/EEC) a capacitor must be built in (see 10.2.2)

Constant action restrictor

Without restrictor = no desig. Restrictor 0,5 dia. = UD

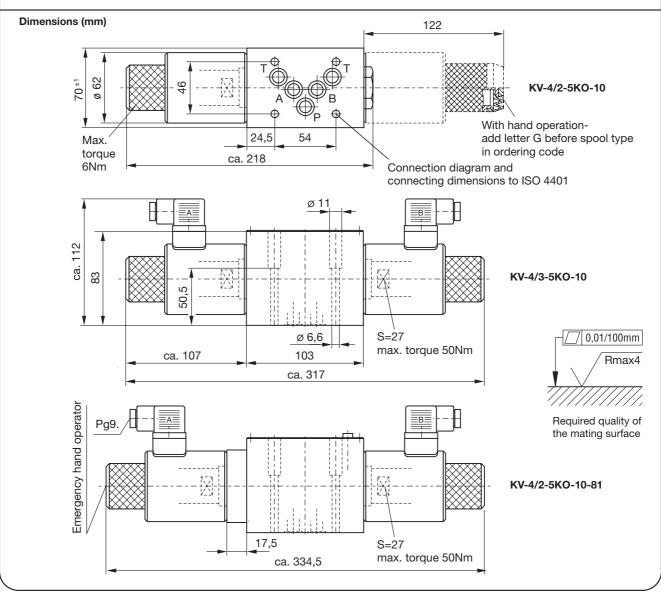

Spool types

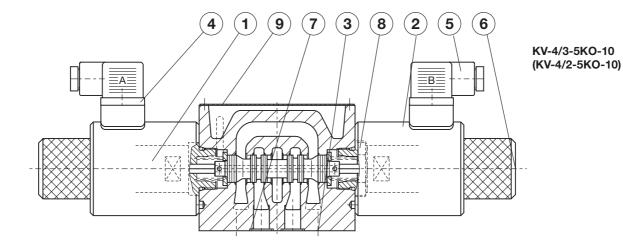
- Port T in the valves with spool type 41A and 41B to be used as lekage line. Important note:


Valves with adjustment of the switching time - a constant or short - time static oil pressure of at least ≥ 4 bar must prevail at connection T of the directional control valve to maintain the pressure in the spring chambers.

 Δp - Q Performance curves $\,$ (measured at t = 50 °C and υ = 28 mm²/s)

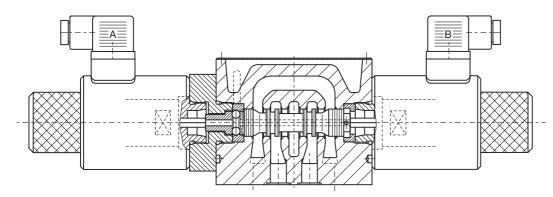
Spool	Flow path				
type	P-A	Р-В	A-T	В-Т	P-T
1	1	1	5	5	-
2	3	3	2	7	8
3	6	6	3	4	-
6	1	1	2	2	-
9	6	6	2	2	-
81	1	1	3	3	-
51A, 51B	1	1	3	3	-
41A, 41B	6	6	-	-	-


p - Q Operating limits (measured at t = 50 °C and υ = 28 mm²/s)

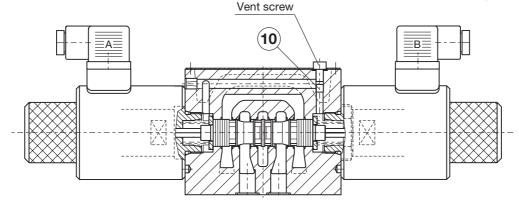

Spool type	Curve
1	1
2	4
3	5
6	3
9	6
81	1
51A, 51B	1
41A, 41B	2

The operating limits of the valve are determined at a voltage 10% below the nominal rating. The curves refer to application with symetrical flow throw the valve (P-A and B-T). In the case of asymetric flow (e.g. one part not used) reduced values may result.

Note: For valves with adjustment of the switching time reduced values of the operating limits may result.



Function drawing



- 1 Solenoid "a" MR-060 2 Solenoid "b" MR-060
- 3 Fixing screws 4 pcs M6 x 60 to DIN EN ISO 4762 -10.9 must be ordered separately Required tightening torque Md = 15 Nm
- 4 Plug-in connector "a" grey 5 Plug-in connector "b" black
- Emergency hand operator O-ring 12,42 x 1,87
- 8 Valve cap 9 Nameplate
- 10 Constant action restrictor

KV-4/2-5KO-10-81

KV-4/3-5KO-10-2-UD (KV-4/2-5KO-10-2-UD)

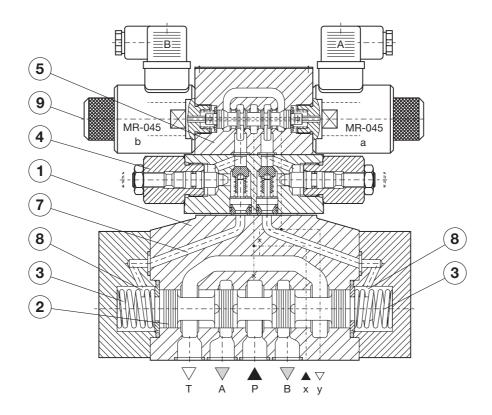
Instalation

The directional control valve must be installed horizontally (Nameplate on top). If this is not the case, the valve must be removed for venting. Unscrew the vent screw. Move the spool alternately to the switching positions a and b until no more bubbles appear at the screw hole. The oil must be visible at the screw hole. Missing oil schould be refielld with an oilcan, drop by drop. Screw in the vent screw.

A constant or short time static oil pressure of at least > 4 bar must prevail at connection T of the directional control valve to maintain the oil pressure in the spring chambers. If this is not the case, the preloaded oil volume of the restricted valve would leak into the T channel through the leakage section of the control spool shoulders.

The dampening constancy also depends on the constancy of the oil viscosity.

For this reason the dampening effect should always be adjusted with the system at operational temperature.


4/2, 4/3 -WAY DIRECTIONAL VALVES type KV

- NS-16
- to 350 bar
- to 300 I/min
- Indirect, solenoid, and mechanical (by lever) operation
- Connection diagram and connecting dimensions to ISO 4401
- Plug-in solenoid connector to ISO 4400
- Protection of solenoid IP 65 to DIN EN 60529
- Fulfil EMC (89/336/EEC)

KV-4/3-16-..

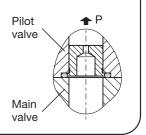
Description of operation

Directional valves type KV with indirect, solenoid-hydraulic operation control the hydraulic fluid flow direction.

These valves consist of the main valve (1), a control spool (2), two return springs (3) in 4/3-way valves and none in 4/2-way valves, a double throttle check/valve (4) and a pilot valve (5).

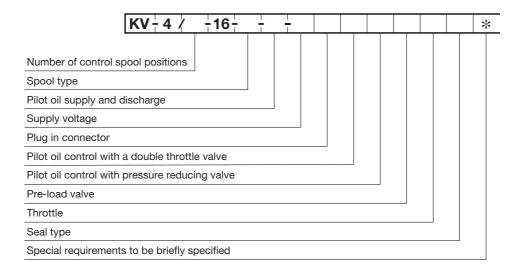
The pilot valve (5) is connected with the pressure chambers (8) via the pilot line (7). Feeding of the pilot valve oil is either or external (via the port "x"). Change-over of the control spool to one of the operating position is activated by the introduction of oil via the pilot valve (5) into one of the pressure chambers (8). A pressure rise in chambers provokes the movement of the control spool (2). Suitable links between ports A,B,P,T according to spool types are established as set forth in the table.

When the solenoid of the pilot valve (5) are de-energised a link between the pressure chamber (8) and the return line "y" for the pilot oil discharge is established. A pressure drop in the chamber actuates the main valve return spring (3) which automatically return the control spool to the neutral position.


Dischange of the return pilot oil from the pressure chambers is either internal or external (via the port "y").

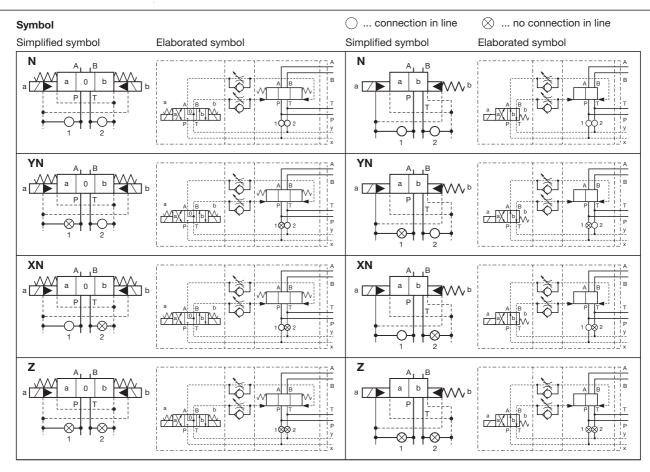
Manual change-over of the main valve is also possible by pressing the emergency hand operator (9).

Indirect directional valves can also be provided with a manual pilot valve. These valves are manually operated by moving the operating lever.


Throttle

If the pilot oil supply rate (x) is greater than permissible a cartridge throttle shall be fitted into the P line of the directional valve.

Ordering code



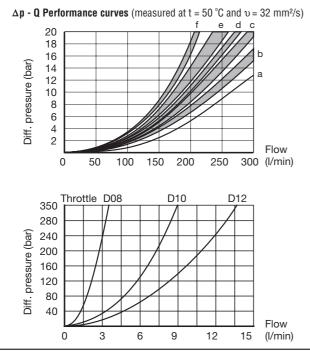
Number of control sp	pool position	Plug-in connector		
two positions = 2 three positions = 3		without signal lamp = no design with signal lamp = L		
Pilot oil supply and d	lischarge	Pilot oil control with a double throttle valve		
external x,y internal x,y internal x, external y	= Z = N = XN	without a double throttle valve = no desig. with a double throttle valve = H		
internal y, external x		Pilot oil control with pressure reducing valve		
for supply and discharge with spool types 2 and 3, refer to the table of technical data		without pressure reducing valve = no desig. with pressure reducing valve = RT		
Supply voltage		Pre-load valve		
direct voltage alternating voltage 24 V = no desig. 12 V = 12 AC		without pre-load valve = no desig. with pre-load valve = V		
12 V = 12 DC 48 V = 48 DC	24 V = 24 AC 48 V = 48 AC	Throttle		
110 V = 110 DC	110 V = 110 AC	without throttle in "P" line = no desig. throttle 0.8 mm dia = D08		
230 V = 230 DC	230 V = 230 AC *	throttle 0,8 mm dia = D08 throttle 1,0 mm dia = D10 throttle 1,2 mm dia = D12		
- Alternating voltage s	colenoids are fitted with a bridge rectifier.	Seal type		
to DIN EN 175301-80	er 48 V an earthing clamp () 003 must be connected. EC) a capacitor must be built in (see 10.2.2)	NBR seals for mineral oil HL, HLP, to DIN 51524 = no design FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380		
Spool types				
A _{L 1} B a 0 b	a/0/b A B	a b A B		
A B a 0 b a	A B D D D D D D D D D D D D D D D D D D	a b a b a b b		
X	=1 =R1	a b a b a b		
	=2 =R2	P' 'T		
IX:HIHIHITI	=3 =R3	a b a b b		
	=4 =R4	=51B =51A =F51 =R51		
	=4 =R4 =5 =R5	=51B =51A =F51 =R51		

Pre-load valve

In valves with a low pressure bypass and internal pilot oil feed, minimum pilot pressure is obtained by installing a pre-load valve in the P-port of the main valve. The cracking pressure is approx. 4,5 bar.

Technical data Flow rate

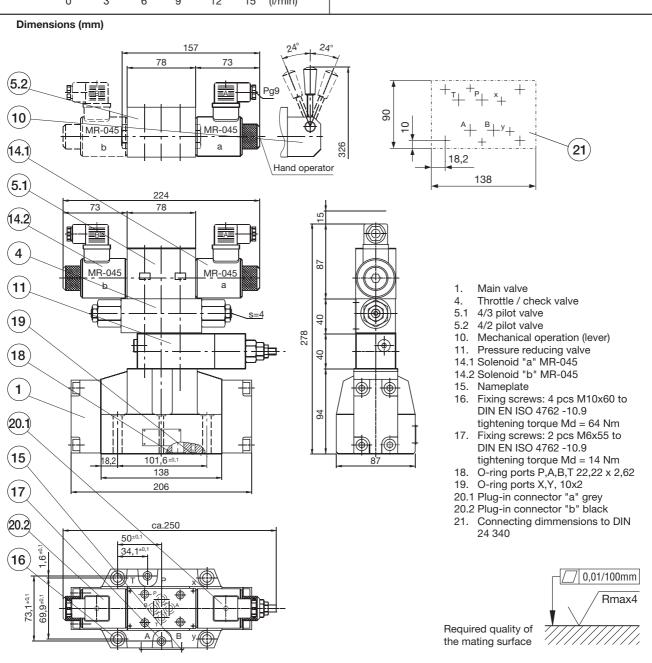
Operating pressure	ports P, A, B port T	bar bar	350 210
Pilot oil pressure (x-external)		bar	50-250
Pre-load valve is fitted into P-port of the main valve po	valve types with internal pilot oil subssible only when the oil flow in the eflow rate Q = 150 l/min, with the c	direction from P tov	vards T achieves
Fluid temperature range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Required pilot oil volume	two-position valve three-position valve	cm ³	7,8 3,9
Mass	main valve 4/3 pilot valve 4/2 pilot valve throttle/check valve pressure reducing valve	kg	8 2,50 2,20 1,45 1,70
Mounting position	optional, horizontal for spo	ol types 4/2	
Switch-on time Solenoid change-over from the centre to the operating positio	three-position valve n two-position valve	ms ms	60 85
Switch-off time Solenoid change-over from the operating to the centre position	three-position valve on two-position valve	ms ms	45 50
Filtration		NAS 1638	8
Ambient temperature range		°C	to +150
Coil temperature range		°C	to +180
Power		W	29*
Voltage		V	≅12,24,48,110,230


The switch-on and switch-off times apply to 24 V DC solenoids.

300

I/min

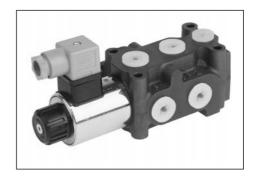
^{* - 12} V supply voltage - 36 W

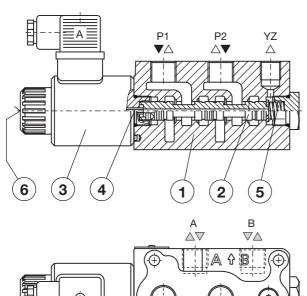

Spool types	P-A	P-B	A-T	В-Т	P-T
1,R1,51B,51A,F51,R51	е	е	е	f	-
2,R2	а	b	С	е	f
3,R3	b	b	С	d	-
4,R4	b	С	С	е	-
5,R5	b	С	С	е	-
6,R6	b	С	d	е	-

Throttle check valve

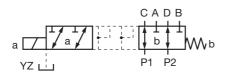
The throttle/check valve used for setting the supply flow rate of the pilot oil to the pressure chambers. Simultaneously, the change-over speed of the main control spool is adjusted. In this way a smoother change-over, without hydraulic shocks is provided.

Pressure reducing valve


The pressure reducing valve used when the pilot oil "X" pressure exceeds the permissible limit p=250 bar.


6/2-WAY DIRECTIONAL VALVES type KV

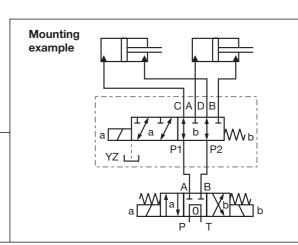
- NS 6
- to 350 bar
- to 50 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connections to ISO 9974, ISO 1179
- Protection of solenoid IP 65 to DIN EN 60529
- Fulfil EMC (89/336/EEC)



KV-6/2-6-S50

Description of operation

Symbol


Directional valves type KV with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.

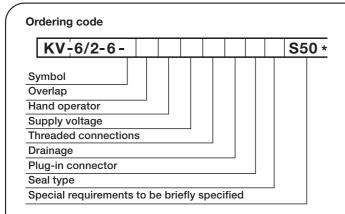
The KV type directional valves consist of a housing (1), a control spool (2), a solenoid (3) and a return spring (5).

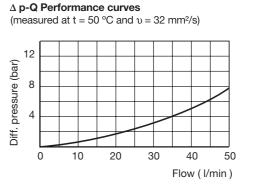
Change-over to the operating position is done by energising the solenoid (3), whereby the solenoid plunger acts on the control spool (2) via the operating pin (4), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

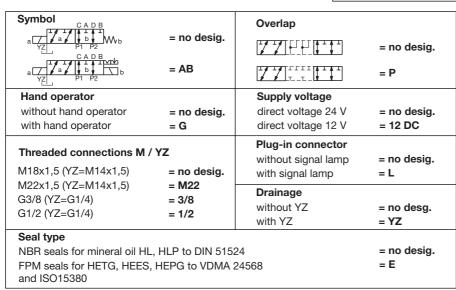
When the solenoid (3) is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2.

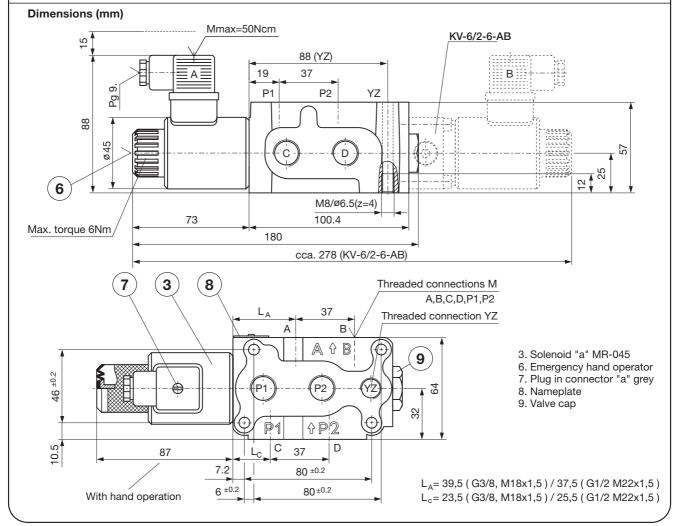
The change-over can also be done manually by pressing the emergency hand operator (6).

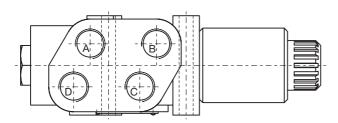
Technical data

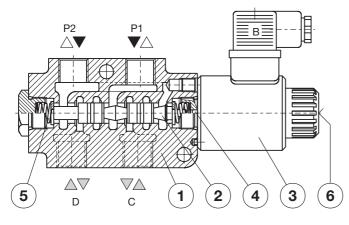

Hydraulic	
riyuraunc	

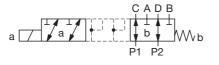

Size			6	
Flow rate		l/min	50	
Operating	with YZ	bar	350	
pressure	without YZ	bar	210	
Oil temperature range		°C	-20 to +70	
Viscosity range		mm²/s	15 to 380	
Mounting position		opti	tional	
Mass		kg	2.5	
Filtration		NAS 1638	8	


Electrical


Supply voltage	V	12, 24 DC		
Power	W	29		
(12 V DC supply voltage)	W	36		
Switching frequency	1/h	15000		
Ambient temperature	°C	to +50		
Coil temperature	°C	to +180		
Duty cycle	continious			

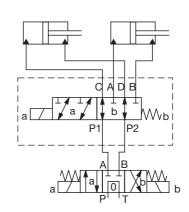

6/2-WAY DIRECTIONAL VALVES type KV-6K/2-6


- NS 6
- to 210 bar
- to 50 I/min
- Direct in-line mounting
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connection to ISO 9974, ISO 1179
- Fulfil EMC (89/336/EEC)


KV-6K/2-6

Description of operation

Symbol


Directional valves type KV-6K/2-6 with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.

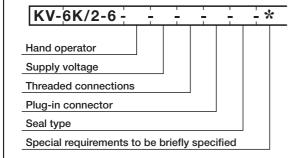
The KV-6K/2-6 type directional valves consist of a housing (1), a control spool (2), and a solenoid (3) with return spring (5). Change-over to the operating position is done by energising the solenoid (3), whereby the solenoid plunger acts on the control spool (2) via the operating pin (4), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

When the solenoid (3) is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2.

The change-over can also be done manually by pressing the emergency hand operator (6).

Mounting example

Technical data


Hydraulic

Size		6
Flow rate	L/min	50
Operating pressure	bar	210
Oil temperature range	°C	-20 to +70
Viscosity range	m²/s	15 to 380
Mounting position	optional	
Mass	kg	2,5
Filtration	NAS 1638	8

Electrical

Supply voltage	V	12, 24 DC
Power	W	29
(12 V DC supply voltage)	W	36
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continious	

Δp - Q Performance curves (measured at t = 50 °C and v = 32 mm²/s)

10

2

P1-A B-P2 P1-C 6 D-P2

30

40

50

20

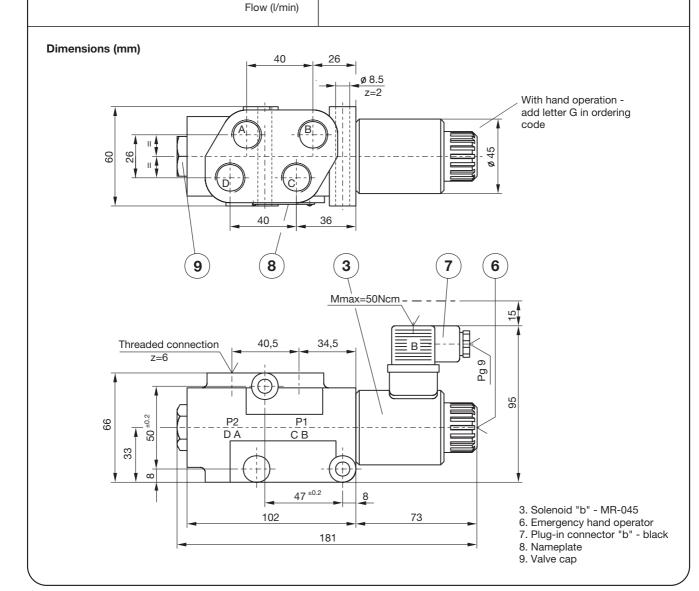
Hand operator

without hand operator = no desig. with hand operator

Supply voltage

direct voltage 24 V = no desig. direct voltage 12 V = 12 DC

Threaded connections

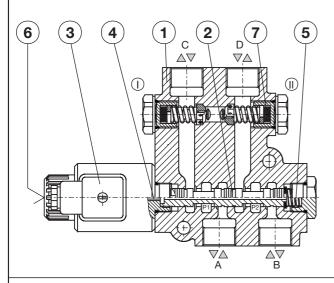

M18x1.5 = no desig.G 3/8 = G 3/8

Plug-in connector

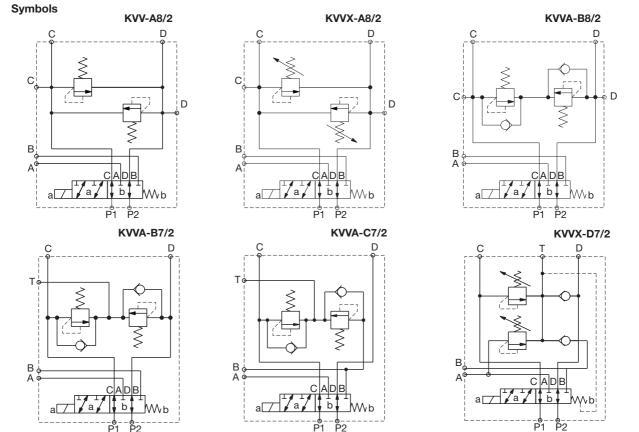
without signal lamp = no desig. with signal lamp

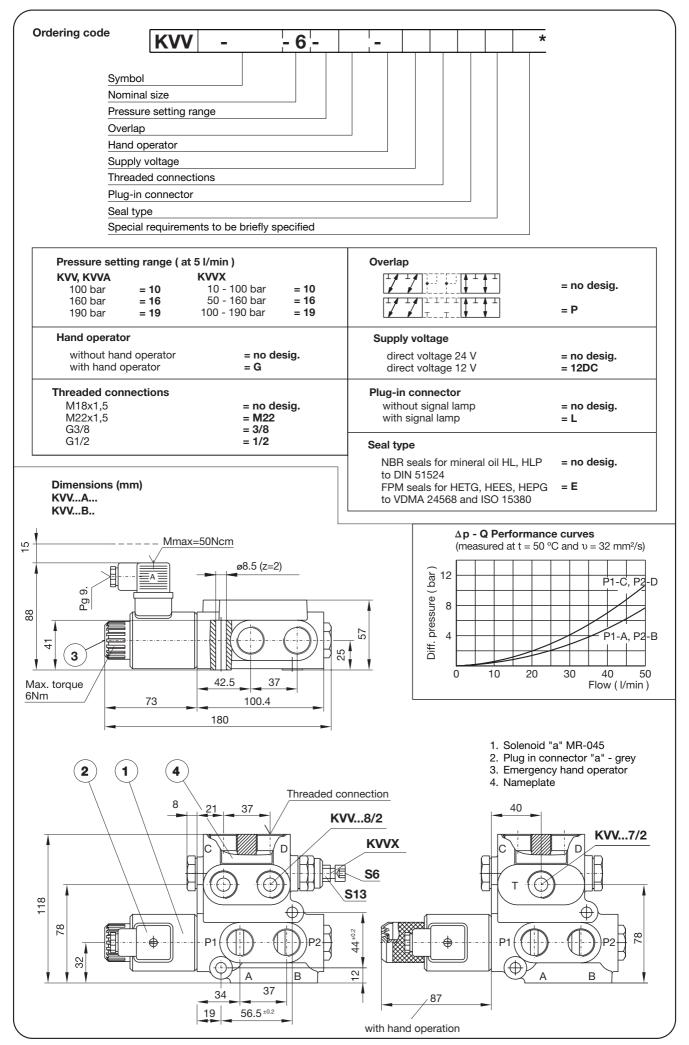
Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380


6/2-WAY DIRECTIONAL VALVES type KVV

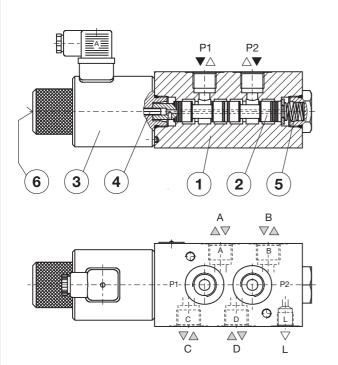
- NS 6
- to 210 bar
- to 50 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connection to ISO 9974, ISO 1179
- Fulfil EMC (89/336/EEC)


KVV-A8/2-6


Description of operation

Direct operated pressure relief valves (7) are used to limit the pressure in working ports. When the pressure exceeds the valve of the spring set the pilot poppet moves off the seat, and frees the flow of the hydraulics fluid. Check valve (type KVVA) possibles flow of the hydraulics fluid from T- port to working ports (to prevent cavitation).

Detailed description of operation and tehnical data - see KV-6/2-6.

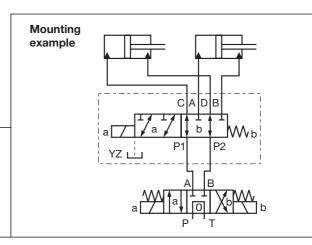

6/2-WAY DIRECTIONAL VALVES type KV

- NS 10
- to 350 bar
- to 80 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connections to ISO 9974, ISO 1179

KV-6/2-10

Description of operation

Symbol C A D B


Directional valves type KV with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.

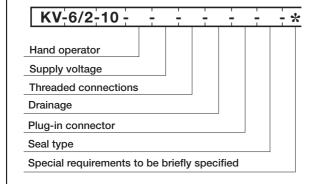
The KV type directional valves consist of a housing (1), a control spool (2), a solenoid (3) and a return spring (5).

Change-over to the operating position is done by energising the solenoid (3), whereby the solenoid plunger acts on the control spool (2) via the operating pin (4), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

When the solenoid (3) is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2.

The change-over can also be done manually by pressing the emergency hand operator (6).

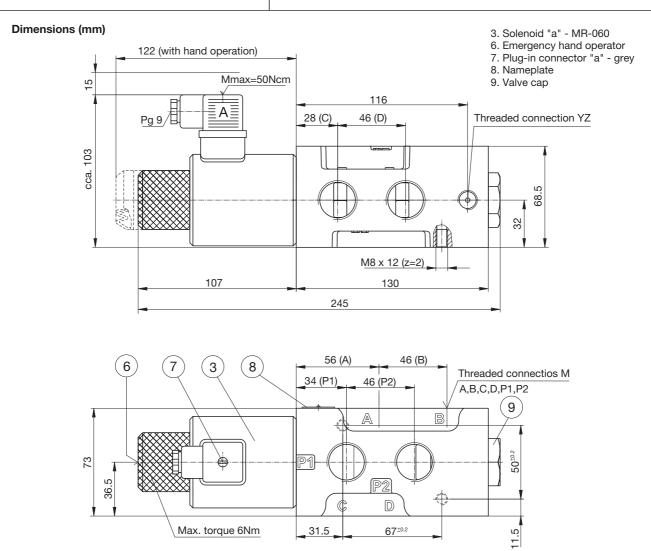
Technical data


Hydraulic

Size		10	
Flow rate		l/min	80
Operating	with YZ	bar	350
pressure	without YZ	bar	210
Oil temperature range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Mounting position		opti	onal
Mass		kg	5,5
Filtration		NAS 1638	8

Electrical

Supply voltage	V	12, 24 DC
Power	W	45
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continious	

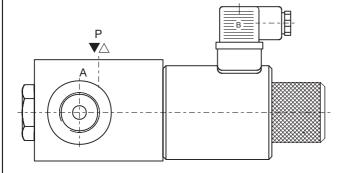


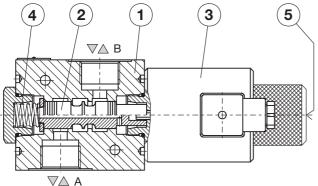
Δ p - Q Performance curves (measured at t = 50 °C and v = 32 mm²/s)

Hand operator without hand operator = no desig. with hand operator = G Supply voltage = no desig. direct voltage 24 V direct voltage 12 V = 12DC Threaded connections M/YZ M 22x1,5 (YZ=14x1,5) = M22 M 27x2 (YZ=14x1,5) = M27 G 1/2 (YZ=G1/4) = 1/2 G 3/4 (YZ=G1/4) = 3/4Drainage without YZ = no desg. with YZ = YZPlug-in connector without signal lamp = no desig. with signal lamp = L Seal type NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig.

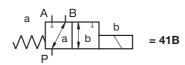
FPM seals for HETG, HEES, HEPG to VDMA 24568 = E

and ISO 15380


3/2-WAY DIRECTIONAL VALVE Type KVC-3/2-10-...

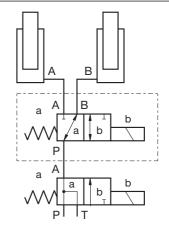

- NS 10
- to 210 bar
- to 60 I/min
- Direct operation by solenoid
- Direct in-line mounting
- Plug-in connector for solenoids to ISO 4400
- Threaded connections to ISO 9974, ISO 1179

KVC-3/2-10


Description of operation

∇△ A

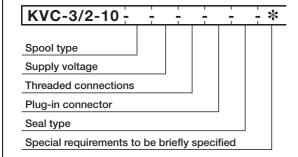
Symbol (spool type)


Directional valves type KVC-3/2-10 with direct solenoid operation are used to control the direction of hydraulic fluid flow. Type KVC-3/2-10 is a reduced version of type KV-6/2. It is used for alternate control of two one-pipe working units (e.g. Plunger) with common, main directional valve.

These valves consist of a housing (1), control spool (2), solenoid (3) and two return springs (4).

The basic control position is a, in which the return spring holds the control spool (2) in its start position. The change-over to the position b is performed by energizing the solenoid (3), whereas the solenoid plunger pushes the slide into the new position. Consequently, the path from P to B is closed, and the path from P to A is freed. By interrupting the electric control signal of the solenoid, the spool returns to its neutral position a due to the action of the return spring (4).

The change-over can also be done manually by pressing the emergency hand operator (5).


Technical data

Hydraulic

Size		10
Flow rate	l/min	60
Operating pressure	bar	210
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Mounting position	optional	
Mass	kg	3,75
Filtration	NAS 1638	8

Flectrical

Supply voltage	V	12, 24
Power	W	45
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Intermittence	100%	

$\begin{array}{c} \text{Ap - Q Performance curves} \\ \text{(measured at t = 50 °C and } v = 32 \text{ mm}^2\text{/s)} \\ \\ \hline 0 \\ \hline 10 \\ \hline 20 \\ \hline 30 \\ \hline 40 \\ \hline 50 \\ \hline 60 \\ \hline \text{Flow (I/min)} \\ \end{array}$

42,5

Α

Supply voltage

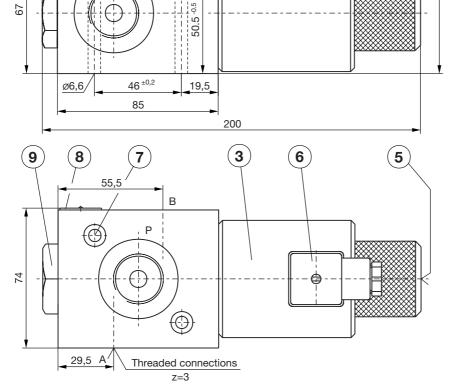
direct voltage 24 V = no design. direct voltage 12 V = 12 DC

Threaded connections

M18x1,5 = no design M22x1,5 = M22 M20x1,5 = M20 G3/8 = G3/8 G1/2 = G1/2

Plug-in connector

without signal lamp = no desig. with signal lamp = L


Seal type

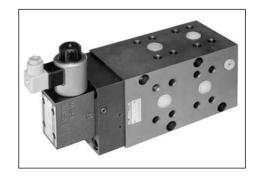
=B

Pg 9

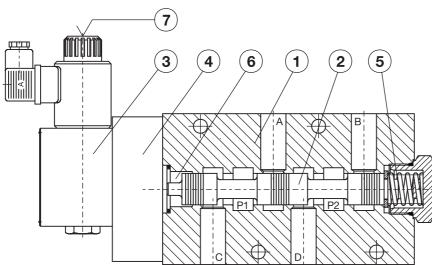
NBR seals for mineral oil HL, HLP to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

Dimensions (mm)

<u>Ø</u>11^{±0,2}


z=2

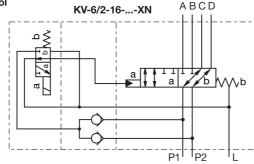
- 3. Solenoid "b" MR-060
- 5. Emergency hand operator
- 6. Plug-in connector "b" -black
- 7. Fixing holes for screws
 DIN EN ISO 4762 (M6x40-10.9)
- 8. Nameplate
- 9. Valve cap

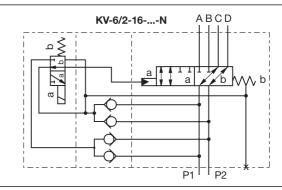

6/2-WAY DIRECTIONAL VALVES type KV

- NS 16
- to 350 bar
- to 250 I/min
- Pilot operated
- Tube-in connector for solenoids to ISO 4400
- Tube connection according to DIN 2353
- Fulfil EMC (89/336/EEC)

KV-6/2-16-XN

Description of operation

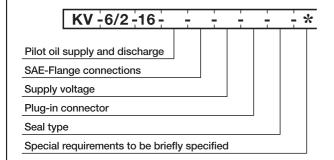

Directional valves type KV-6/2-16 with indirect, solenoid-hydraulics operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.


The KV type directional valves consist of a housing (1), a control spool (2), a pilot valve (3) a sendwich plate (4) and a return spring (5).

Change-over to the operating position is done by energising the solenoid of the pilot valve (3). A pressure rise in the pressure chamber (6), provoke the movement of the control spool (2), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

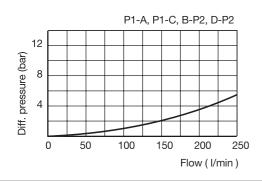
When the solenoid of the pilot valve is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2. The change-over can also be done manually by pressing the emergency hand operator (7) of the pilot valve.

Symbol


Technical data

Hydraulic

	16
l/min	250
bar	350
bar	160
°C	-20 to +70
mm²/s	15 to 380
optional	
kg	22
NAS 1638	8
	bar bar °C mm²/s opti


Supply voltage	V	12, 24 DC
Power	W	29
(12 V DC supply voltage)	W	36
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continious	

Electrical

Δ p-Q Performance curves

(measured at t = 50 °C and v = 32 mm²/s)

Pilot oil supply and discharge

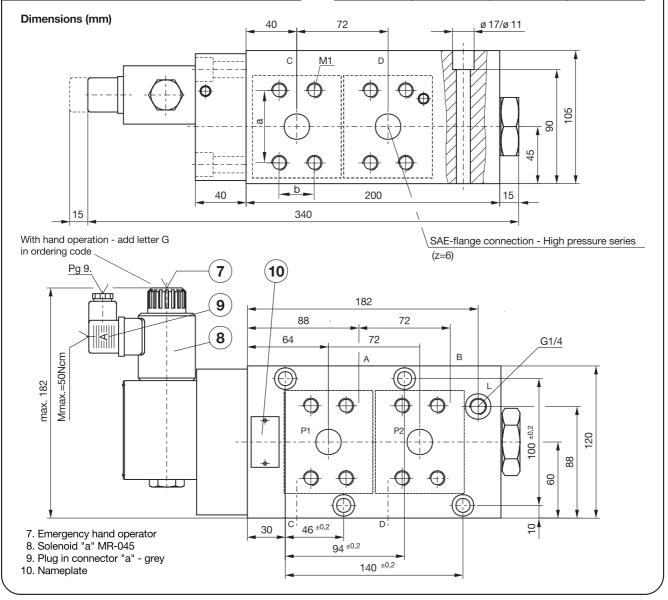
internal x,y = N internal x, external y (port L) = XN

SAE-Flange connections

SAE-Flange connections 3/4 - High pressure series = SAE3/4 SAE-Flange connections 1 - High pressure series = SAE1

Supply voltage

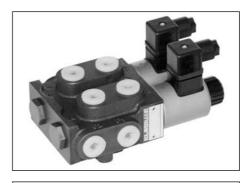
direct voltage 24 V = no desig. direct voltage 12 V = 12DC

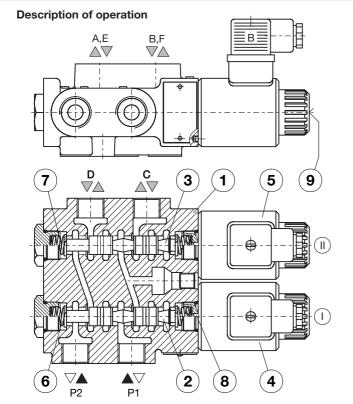

Plug-in connector

without signal lamp = no desig.
with signal lamp = L

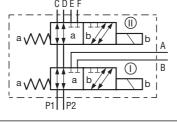
Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E


Size	а	b	M1
3/4	50,8	23,8	M10
1	57,2	27,8	M12

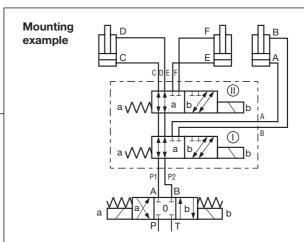


8/3-WAY DIRECTIONAL VALVES type KV


- NS 6
- to 210 bar
- to 50 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connection to ISO 9974, ISO 1179
- Fulfil EMC (89/336/EEC)

KV-8/3-6

Symbol

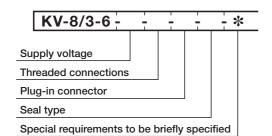


Directional valves type KV with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between three consumers and the basic directional valve, when we wish to control both consumers alternately by means of one basic directional valve.

The KV type directional valves consist of a housing (1), a control spool (2,3), two solenoids (4,5) with return spring (6,7). Change-over to one of the operating positions is done by combination of operation of solenoids (4,5), whereby the solenoid plunger acts on the control spool (2,3) via the operating pin (8), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B, C, D, E, F and P2, as seen forth in the schematic diagram of a mounting example.

When the solenoid (4,5) is de-energised, the control spool (2.3) is returned to their neutral position by the return spring (6,7).

The change-over can also be done manually by pressing the emergency hand operator (9).


Technical data

Hvdra	

Size		6	
Flow rate	l/min	50	
Operating pressure	bar	210	
Oil temperature range	°C	-20 to +70	
Viscosity range	mm²/s	15 to 380	
Mounting position	optional		
Mass	kg	3,8	
Filtration	NAS 1638	8	

Electrical

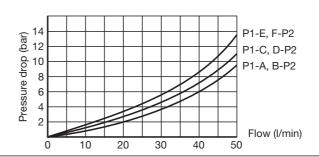
Supply voltage	V	12, 24 DC
Power	W	29
(12 V DC supply voltage)	W	36
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continious	

Supply voltage

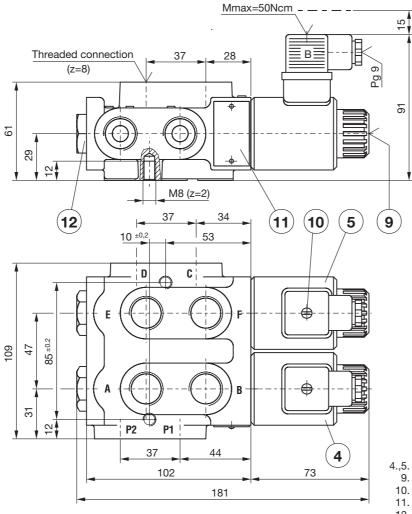
direct voltage 24 V = no desig. direct voltage 12 V = 12 DC

Threaded connections

M 18x1.5 = no desig. M 22x1,5 = M 22 G 3/8 = G 3/8G 1/2 = G 1/2


Plug-in connector

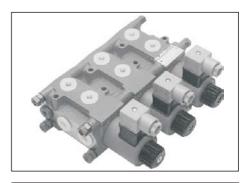
without signal lamp = no desig.
with signal lamp = L


Seal type

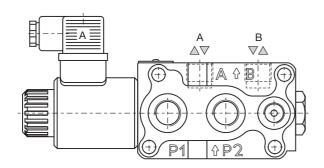
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

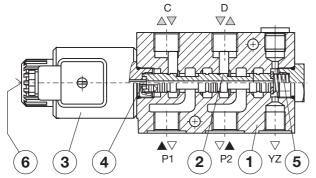
 $\Delta\,p$ - Q Performance curves (measured at t = 50 °C and $_{\mbox{$\upsilon$}}$ = 32 mm²/s)

Dimensions (mm)



- 4.,5. Solenoids "b" MR-045
 - 9. Emergency hand operator
- 10. Plug-in connector "b" black
- 11. Nameplate
- 12. Valve cap

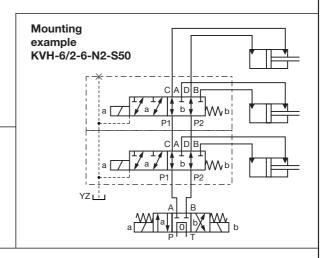

6/2-WAY DIRECTIONAL VALVES type KVH


- NS 6
- to 315 bar
- to 50 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connection to ISO 9974, ISO 1179
- Fulfil EMC (89/336/CCE)
- For stacking (1-5 units)

KVH-6/2-6-N3-S50

Description of operation

Symbol KVH-6/2-6-N1-S50 C A D B C A D B P1 P2 W b

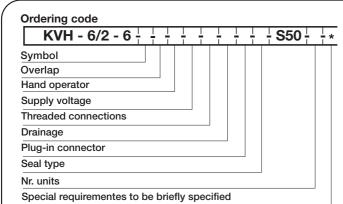

Directional valves type KVH with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.

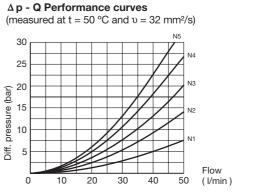
The KVH type directional valves consist of a housing (1), a control spool (2), and a solenoid (3) with return spring (5).

Change-over to the operating position is done by energising the solenoid (3), whereby the solenoid plunger acts on the control spool (2) via the operating pin (4), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

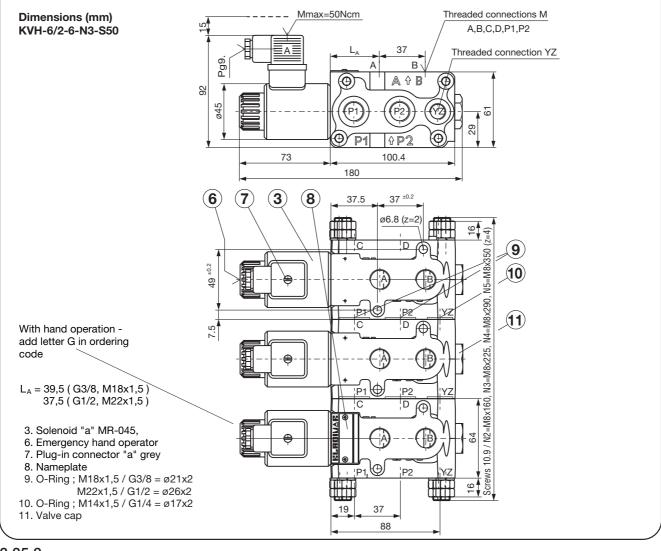
When the solenoid (3) is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2.

The change-over can also be done manually by pressing the emergency hand operator (6).

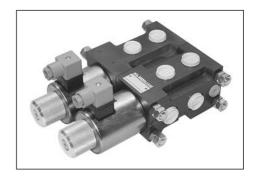

Technical data

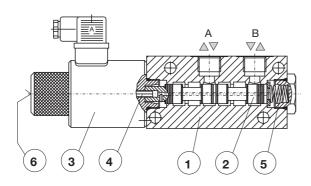

Hydraulic

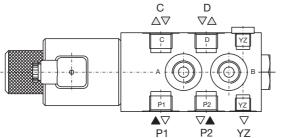
Size			6
Flow rate		l/min	50
Operating	with YZ	bar	315
pressure	without YZ	bar	210
Oil temperature range		°C	-20 to +70
Viscosity range		mm²/s	15 to 380
Mounting p	osition	optional	
Mass		kg	2,7 (N1)
Filtration		NAS 1638	8

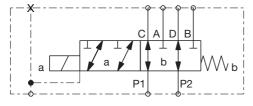

Electrical

Supply voltage	V	12, 24 DC
Power	W	29
(12 V DC supply voltage)	W	36
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle		continious


		I			
Symbol CADB		Overlap		Nr. units	
a Z A D B	= no desig.	771111	= no desig.	one units	= N1
a Z A D B A	= AB	T T T T T T T T T T T T T T T T T T T	= P	two units	= N2
Hand operator		Supply voltage		three units four units	= N3 = N4
without hand operator with hand operator	= no desig. = G	direct voltage 24 V direct voltage 12 V	= no desig. = 12 DC	five units	= N5
Threaded connections M	/ YZ	Plug-in connector without signal lamp	= no desig.		
M18x1,5 (YZ=M14x1,5)	= no desig.	with signal lamp	= L		
M22x1,5 (YZ=M14x1,5) G3/8 (YZ=G1/4) G1/2 (YZ=G1/4)	= M22 = 3/8 = 1/2	Drainage without YZ with YZ	= no desig. = YZ		
Seal type NBR seals for mineral oil H	L. HLP to DIN 5152	4	= no desig.		


6/2-WAY DIRECTIONAL VALVES type KVH


- NS 10
- to 315 bar
- to 80 I/min
- Direct operation by solenoid
- Plug-in connector for solenoids to ISO 4400
- Threaded connection to ISO 9974, ISO 1179


KVH-6/2-10-N2

Description of operation

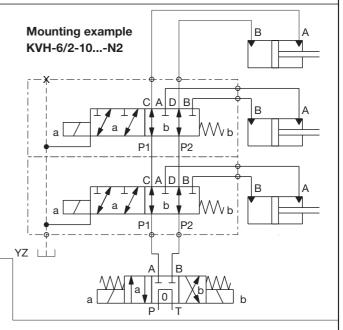
Symbol

Tehnical data

Filtration

Size			10
Flow rate		I/min 80	
Operating	with YZ	bar	315
pressure	without YZ	bar	210
Oil temperature range		°C	-20 to +70
Viscosity range		mm²/s 15 to 380	
Mounting position		optional	
Mass		kg 5,5	

NAS 1638

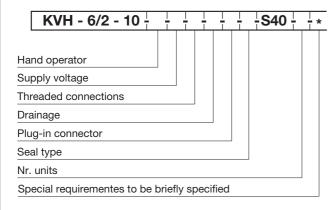

Directional valves type KVH with direct solenoid operation control the direction of the hydraulic medium flow. They are mostly used as link between two consumers and the basic directional valve, when we want to control both consumers alternately by means of one basic directional valve.

The KVH type directional valves consist of a housing (1), a control spool (2), a solenoid (3) and a return spring (5).

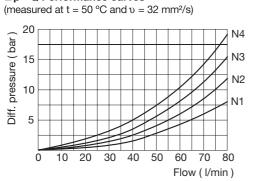
Change-over to the operating position is done by energising the solenoid (3), whereby the solenoid plunger acts on the control spool (2) via the operating pin (4), thus clearing the corresponding flow ways and establishing respective links between the ports P1, A, B and P2.

When the solenoid (3) is de-energised, the control spool (2) is returned to its neutral position by the return spring (5), thus establishing again the links between ports P1, C, D and P2.

The change-over can also be done manually by pressing the emergency hand operator (6).



Electrical


Supply voltage	V	12, 24 DC
Power	W	45
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continious	

Hydraulic

8

Δp - Q Performance curves

Hand operator

without hand operator = no desig.
with hand operator = G

Suplly voltage

direct voltage 24 V = no desig. direct voltage 12 V = 12DC

Threaded connections M / YZ

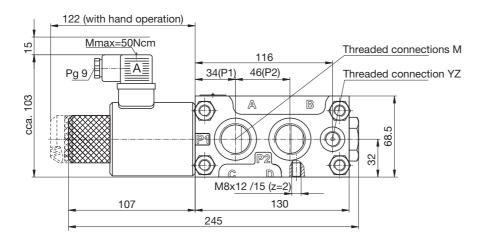
M22x1,5 / M14x1,5 = M22 M27x2 / M14x1,5 = M27 G1/2 / G1/4 = G1/2 G3/4 / G1/4 = G3/4

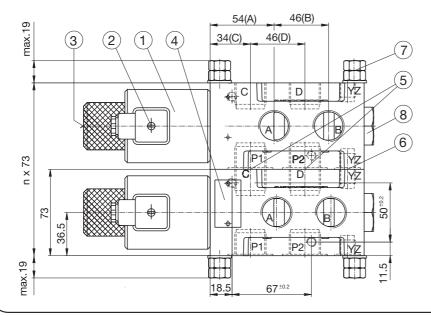
Drainage

without YZ = no desig. with YZ = YZ

Plug-in connector

without signal lamp = no desig.
with signal lamp = L

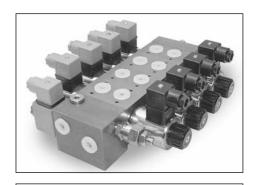

Seal type


NBR seals for mineral oil HL, HLP to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = $\bf E$ and ISO 15380

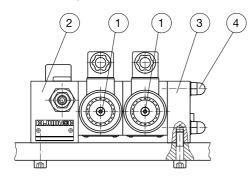
Nr. units

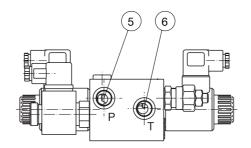

one unit (n=1) = N1 two units (n=2) = N2 three units (n=3) = N3 four units (n=4) = N4

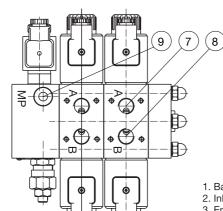
Dimensions (mm)

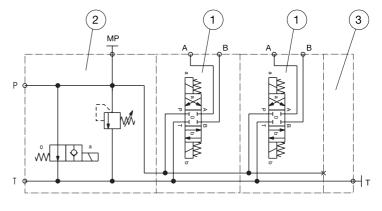


- 1. Solenoid "a" MR-045
- 2. Plug-in connector "a" grey
- 3. Emergency hand operator
- 4. Nameplate
- 5. O-Ring; 26x2=KVH-6/2-10-G1/2(M22), 31x2=KVH-6/2-10-G3/4(M27)
- 6. O-Ring 17x2
- 7. Screws; M10 10.9 (z=4)
- 8. Valve cap

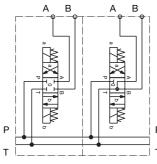

4/2 and 4/3 - WAY BANKABLE DIRECTIONAL VALVES type KVM

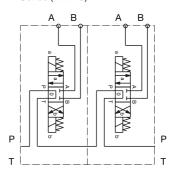

- NS 6
- to 350 bar
- to 40 I/min
- Threaded connection to ISO 9974, ISO 1179
- Series or parallel connections
- Inlet plate posybility with pressure relief valve, pump unloading valve or flow control valve
- Posibility to use standard components for vertical stacking




KVM - 6 -...- VV - KV - N4

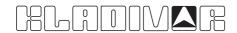
Basic concept



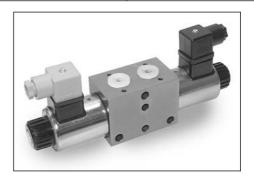

- 1. Basic (directional control) valves KVM-6
- 2. Inlet plate OB-KVM-6
- 3. End plate ZB-KVM-6
- 4. Fixing elements for mounting SET-KVM-6
- 5. Threaded connection P
- 6. Threaded connection T
- 7. Threaded connection A
- 8. Threaded connection B
- 9. Threaded connection MP (closed)

Type of connection

Parallel (KVM-P)



Series (KVM-S)


Electrical

= no desig.

4/2 and 4/3 - WAY BANKABLE DIRECTIONAL VALVES type KVM

- NS 6
- to 350 bar
- to 40 I/min
- Parallel or series connection
- Direct operation by solenoid
- Plug-in connection for solenoids to ISO 4400
- 5-chamber model with good spool guidance
- Wet pin solenoid with interchangeable coil
- Manual emergency control
- Protection of solenoid IP 65 to EN 60529
- Fulfil EMC (89/336/EEC)

KVM - P - 4/3 - 6 - 1 - 12DC - 3/8

Technical data

Hydraulic

			KVM-P	KVM-S
Size			6	6
Flow rate		l/min	40	30
Operating	A, B, P	bar	350	210
pressure	Т	bar	210	210
Oil temperature range		°C	-20 to	o +70
Viscosity range	<u> </u>	mm ² /s	15 to	380
Mass	4/2	kg	1,	85
	4/3	kg	2	,4
Filtration		NAS 1638	8	3

Supply voltage	V	12, 24 DC
Power	W	29
(12 V DC supply voltage)	W	36
Switching frequency	1/h	15000
Ambient temperature	°C	to +50
Coil temperature	°C	to +180
Duty cycle	continions	

Ordering code

KVM - 4/ - 6 - Type of connection

Number of control spool positions

Hand operator Spool type

Supply voltage

Threaded connections

Plug-in connector

Seal type

Special requirementes to be briefly specified

Type of connection

series connection = S parallel connection = P

Number of control spool positions

two positions = 2 three positions = 3

Hand operator

emergency hand operation = no design hand operator with rubber = G

Supply voltage

direct voltage 24V = no design direct voltage 12V = 12 DC

Threaded connections

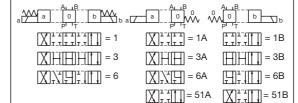
G3/8 (ISO 1179) M 18 x 1,5 (ISO 9974)

= 3/8 = no design Plug-in connector

without signal lamp = no desig. with signal lamp = L

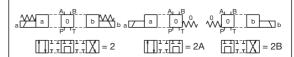
Seal type

*

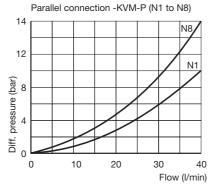

NBR seals for mineral oil

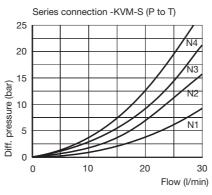
HL, HLP to DIN 51524

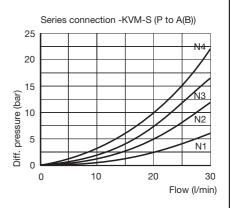
FMP seals for HETG, HEES,

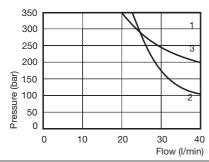

HEPG to VDMA 24568 and ISO 15380 = E

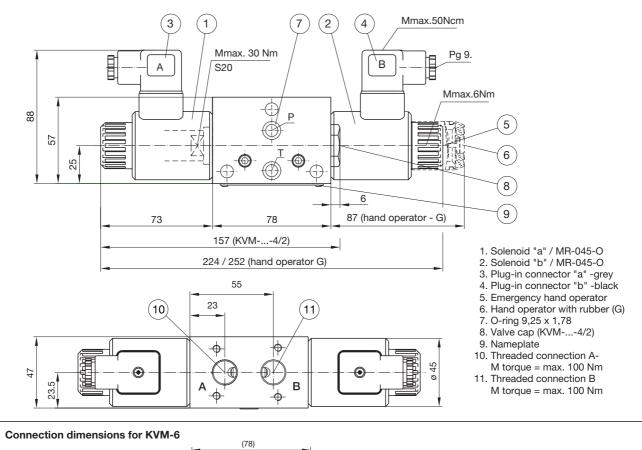
Spool type - parallel connection (KVM-P)

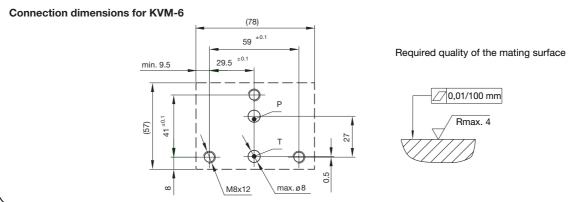





Spool type - series connection (KVM-S)

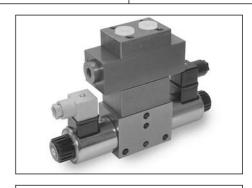

Δp - Q Performance curves (measured at t = 50 °C and υ = 28 mm²/s)

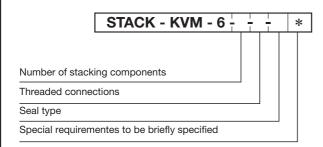



 Δp - Q Performance curves (measured at t = 50 °C and υ = 28 mm²/s)

Spool type	Curve
1	1
2	2
3, 6	3

The operating limits of the valve shall be determined at a voltage 10% below the nominal rating. The curves refer to application with symmetrical flow throw the valve (P-A and B-T). In the case of asymmetrical flow (e.g. one part not used) reduced values may result.




VERTICAL STACKING ON VALVES type KVM

- NS 6
- to 350 bar
- to 40 I/min
- Use standard components for vertical stacking
- Threaded connections to ISO 1179 or ISO 9974
- Posibility of stacking one or two standard components

KVM-P-4/3-5KO-6-and stacking VP-NOV-6

Ordering code

Number of stacking components
one standard component = N1
two standard components = N2

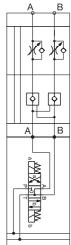
Threaded connections
G3/8 (ISO 1179) = 3/8
M18 x 1,5 (ISO 9974) = no desig.

Seal type

NBR seals for mineral oil
HL, HLP to DIN 51524 = no desig.

FMP seals for HETG, HEES,

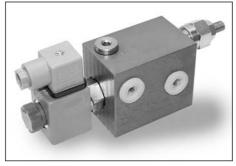
HEPG to VDMA 24568 and ISO 15380 = E


VP-NOV-6 20 2.2 135 (two components) $\overline{\mathbf{Q}}$ • (one component) 4 В 4 3 95 В 35 2.1 \oplus • 54.5 2.3 22.5 Mtorque = max. 9 Nm

One standard component

VP-NDV-6

В



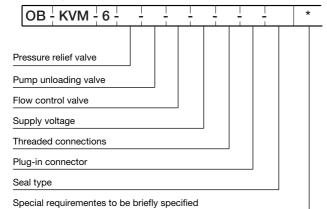
- 1. Bankable directional valve KVM-6
- 2. STACK-KVM-6 consist of:
 - 2.1 Adapter plate and two O-rings 18,77 x 1,78
 - 2.2 End plate and two O-rings 9,25 x 1,78
 - 2.3 Fixing screws M5x100 DIN EN ISO 4762-10.9 (for one stacking component) or M5x140 DIN EN ISO 4762-10.9 (for two stacking components)
- 3. First stacking component (standard VP-NOV-6 or VP-NDV-6)
- 4. Second stacking component (standard VP-NDV-6)

INLET PLATE type OB-KVM-6

- NS 6
- to 350 bar
- to 40 I/min
- Provide pressure relief valve
- Provide pump unloading valve
- Provide flow control valve
- Threaded connections to ISO 9974, ISO 1179

OB - KVM - 6 - VV20 - KVO

OB - KVM - 6 - VV20 - TVTPG


Technical data

Oil temperature range	°C	-20 to +70
Viscosity range	mm ² /s	15 to 380
Filtration	NAS 1638	8

	OB-KVM-6	kg	1,25
Mass	OB-KVM-6-VV	kg	1,35
IVIASS	OB-KVM-VV-KV	kg	2,2
	OB-KVM-VV-TVTP	kg	4,5

Pressure relief valve (VV)			Pump unloading valv	e (KV)		Flow control valve (TVTP)			
Flow rate	l/min	40	Flow rate	l/min	40	Flow - inlet I/min		max. 50	
Press. setting	bar	50-210	Max. pressure	bar	350	Flow - priority way	l/min	0 - 25	
Tress. setting	bar	100-350	Supply voltage	V DC	12, 24	Flow - bypass	l/min	max. 40	
Adjustments	socket screw		Power	W	17	Max. pressure	bar	210	

Ordering code

without pressure relief valve = no desig.

pressure relief valve - range 50-210 bar = VV20

pressure relief valve - range 100-350 bar = VV35

Pump unloading valve

without pump unloading valve = no desig.

pump unloading valve - normally closed = KV0

.... - with hand operator - knob = KVG0

pump unloading valve - normally open = KV1

.... - with hand operator - knob = KVG1

normally closed

Flow control valve

without flow control valve = no desig.

Flow control valve - rotary knob - TVTP-25-B = TVTPB

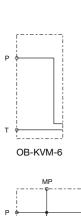
Flow control valve - prop. solenoid - TVTP-25-P = TVTP

.... - with hand operator - knob = TVTPG

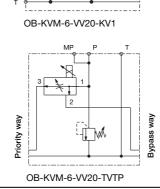
Supply voltage

direct voltage 24 V = no desig. direct voltage 12 V = 12DC

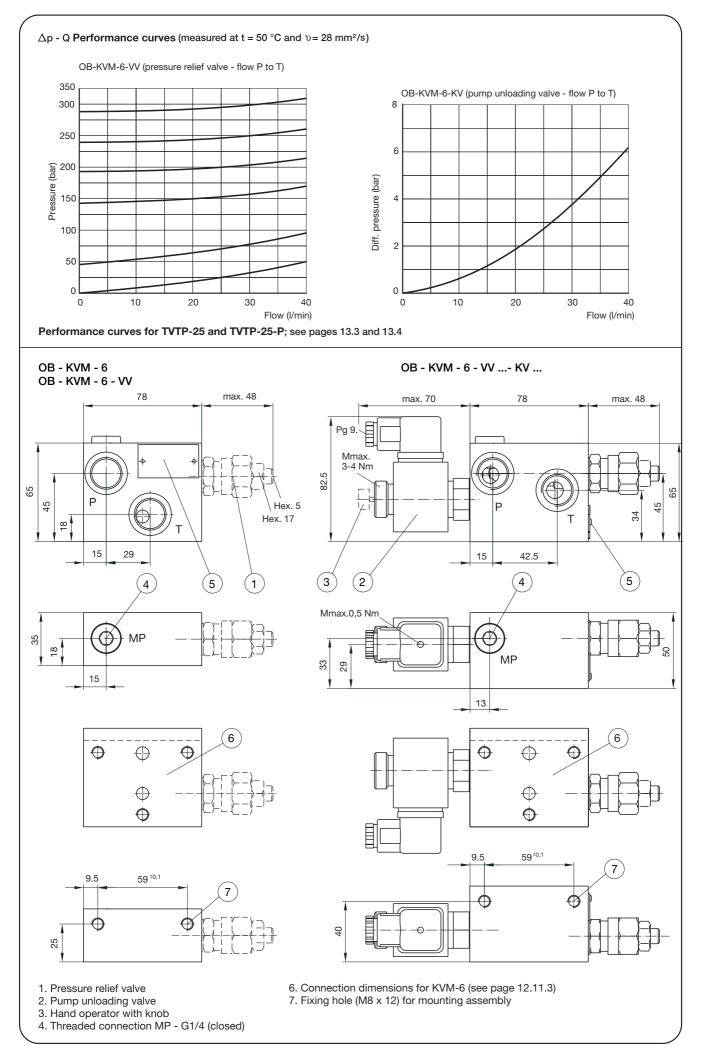
Threaded connections

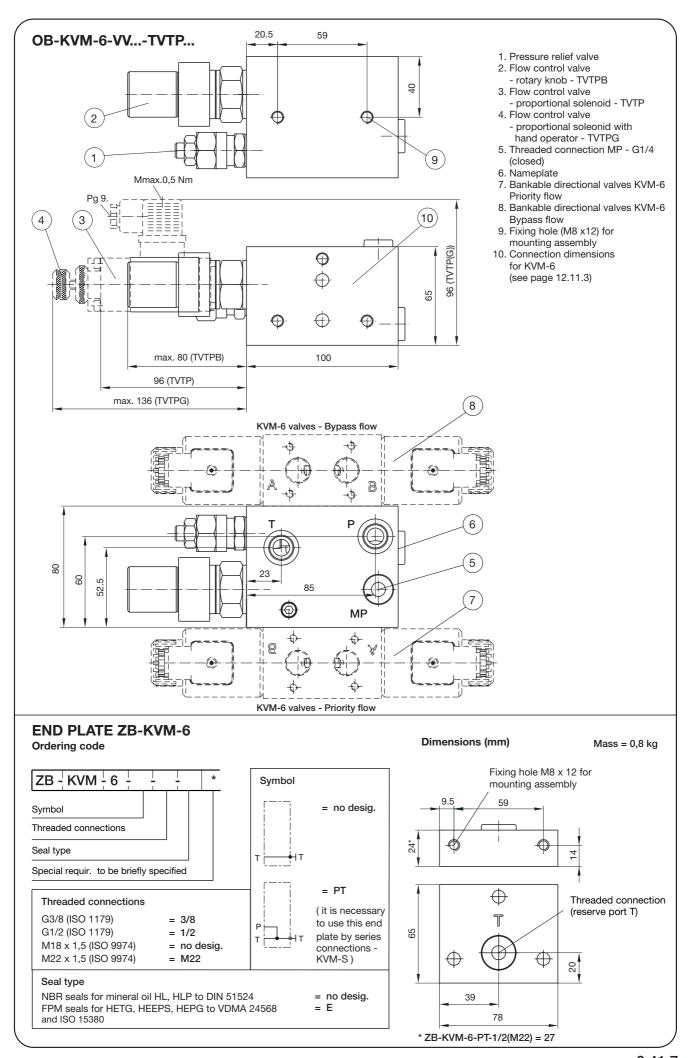

G3/8 (ISO 1179) = 3/8 G1/2 (ISO 1179) = 1/2 M18 x 1,5 (ISO 9974) = no desig. M22 x 1,5 (ISO 9974) = M22

Plug-in connector


without signal lamp = no desig.
with signal lamp = L

Seal type


NBR seals for mineral oil HL, HLP to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380



OB-KVM-6-VV35

white h

FIXING ELEMENTS FOR MOUNTING

Ordering code

SET - KVM - 6 -

Number of bankable directional valves

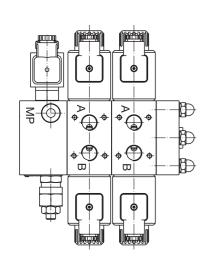
Number of bankable directional valves KVM-6

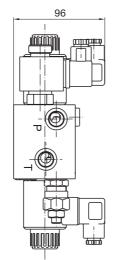
Valves IXVIVI 0	
one valve KVM-6	= N1
two valves KVM-6	= N2
three valves KVM-6	= N3
four valves KVM-6	= N4
five valves KVM-6	= N5
six valves KVM-6	= N6
seven valves KVM-6	= N7
eight valves KVM-6	= N8

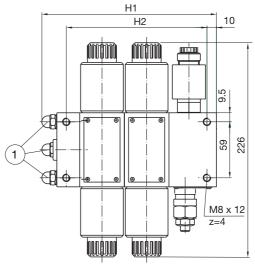
SET-KVM-6 consists of:

- a) three nuts M8 DIN 1587
- b) three washers A8 DIN 6798-J
- c) three screws M8 DIN 939 10.9

Screw M8 DIN 939 10.9:

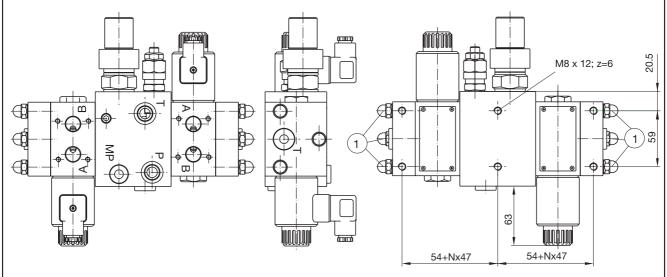

Max. number of bankable valves KVM:

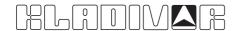

- a) parallel connection (KVM-P) = eight valves (max. N8) $\,$
- b) series connection (KVM-S) = four valves (max. N4)


	I (mm)
N1	80
N2	127
N3	174
N4	221
N5	268
N6	315
N7	362
N8	409

OVERALL DIMENSIONS

OB-KVM-6, OB-KVM-6-VV

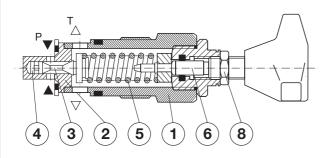




	H1	H2
OB-KVM-6 or OB-KVM-6-VV	75 + N x 47 (N = 1 to 8)	39 + N x 47 (N = 1 to 8)
OB-KVM-6-VVKV	90 + N x 47 (N = 1 to 8)	54 + N x 47 (N = 1 to 8)

OB-KVM-6-VV...-TVTPB...

1. Mtorque / Parallel connection (KVM-P) - max. 20Nm / Series connection (KVM-S) - max. 16 Nm


PRESSURE RELIEF VALVE type VVP

- NS 6, 10
- to 400 bar
- to 120 I/min
- Direct operated
- For fitting into a block
- For independent mounting
- Two pressure setting elements (set screw, rotary knob)

VVP-6, VVP-10

Description of operation

Direct operated pressure relief valves type VVP are used to maintain and limit the pressure in a hydraulic system.

These valves consist of a housing (1), a hardened seat (2), a poppet (3), with a damping spool (4), a spring (5), and a pressure setting element (6).

The P-line of this pressure relief valve is connected with the hydraulic system. The pressure of the hydraulic fluid acts on the front side of the pilot poppet (3), and the force of the spring (5) set by the pressure setting element (6) is applied to the poppet from the opposite side. When the system pressure exceeds the valve of the spring set by the pressure setting element (6) the pilot poppet moves off the seat (2), and frees the flow of the hydraulics fluid in the direction from P towards T.

The damping spol (4) prevents vibrations of the pilot poppet when opening or closing the flow way of the hydraulic flow. Loosening of the pressure setting element is prevented by a counternut (8).

Ordering code

Nominal size

Pressure setting range

Pressure setting element

Seal type

Special requirements to be briefly specified

Nominal size Size 6 = 6

Size 10 = 10

Pressure setting range

to 50 bar = 50 to 100 bar = 100 to 200 bar = 200 to 315 bar = 315

to $400 \, \text{bar} = 400$

Pressure setting element

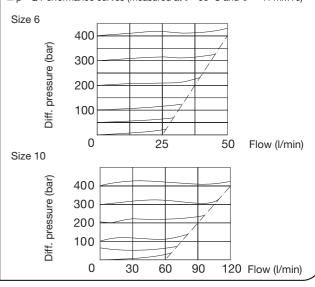
set screw with protective cap = A rotary knob = B

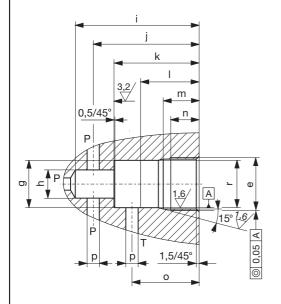
Seal type

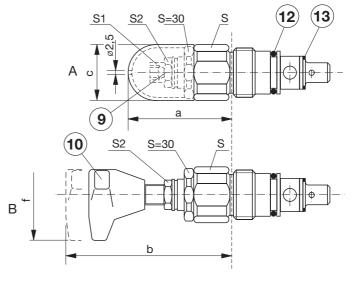
*

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E

and ISO 15380


Symbol


Technical data


Size		6	10
Flow rate	l/min	50	120
Pressure setting range	bar	to 400	to 400
Oil temperature range	°C	-30 to +70	-30 to+70
Viscosity range	mm²/s	2,8 to 380	2,8 to 380
Mass, execution A	kg	0,4	0,5
Mass, execution B	kg	0,5	0,6
Filtration	NAS 1638	8	8

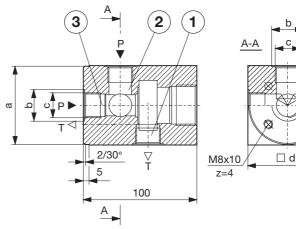
 Δ p - Q Performance curves (measured at t = 50 °C and υ = 41 mm²/s)

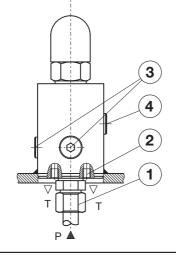
Dimensions (mm)

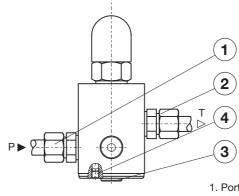
- 9. Pressure setting by screw and protective cap 10. Pressure setting by rotary knob 12. O-ring, nominal size 6, 19,2 x 3
- O-ring, nominal size 10, 26 x 3
- 13. Usit ring, nominal size 6, 17,4 x 24 x 1,5 Usit ring, nominal size 10, 24,7 x 31 x 2

Tightening torque for fixing: Nominal size 6 Md=80 Nm Nominal size 10 Md=140 Nm

Customer specified setting can be secured by means of a stamp and a wire.


Туре	а	b	С	е	f	g	h	i	j	k	Ι	m	n	0	р	r	S	s1	s2
VVP-6	72	94	ø34	M28x1,5	ø60	ø24,9	ø15	65	56,5 ^{±5}	45	30	19	15	35	ø6	ø25H9	32	6	19
VVP-10	68	90	ø38	M35x1,5	ø60	ø31,9	ø18,5	80	67,5 ^{±7}	52	35	23	18	41	ø10	ø32H9	36	6	19


Connecting dimensions / Connection P-VVP-6, P-VVP-10


- 1. Oil discharge when fitted independently
- 2. Oil supply when fitted independently
- 3. Oil supply when fitted on a tank cover
- 4. Oil discharge when fitted on a tank cover

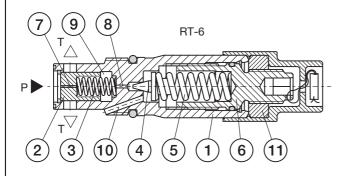
When fitting, the excess ports for oil supply and discharge must be closed by means of suitable screw.

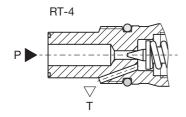
Size	а	b	С	□d	mass
6	ø59 d9	Ø24 ⁺⁰ ,	[†] M18x1,5	60	2,5 kg
10	ø69 d9	Ø28 ⁺⁰ ,	¹ M22x1,5	70	2,9 kg

- 1. Port "P"
- 2. Return line "T"
- 3. Locking screws P lines

4

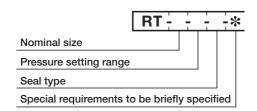
4. Locking screws - T line


PRESSURE RELIEF VALVE type RT


- NS 4, 6, 10
- to 350 bar
- to 100 I/min
- Direct operated NS 4
- Pilot operated NS 6, 10
- For independent fitting into a block
- Two pressure setting ranges

RT-4, RT-6, RT-10

Description of operation



Pilot operated pressure relief valves type RT are used for maintaining and limiting the pressure in a hydraulic system. These valves consist of a housing of cartridge design (1), main spool insert (2) with a spring (3), pilot poppet (4), spring (5) and pressure setting element (6).

The P-line of this pressure relief valve is connected with the hydraulic system. The hydraulic medium pressure acts on the front side of the main spool insert. The bores (7,8) permit the introduction of pilot oil into the pressure chamber (9) and the application of pressure to the opposite side of the main spool insert and the front side of the pilot poppet. The pressure balance in the system and pressure chamber holds this pressure relief valve in closed position till the pressure in system exceeds this value the pilot poppet moves off the valve seat, freeing the pilot oil discharge through the bore (10). A pressure drop in the pressure chamber rises the main spool insert, thus clearing the hydraulic medium flow way in the direction from P towards port T.

Loosening of the pressure setting element (6) is prevented by a counternut (11).

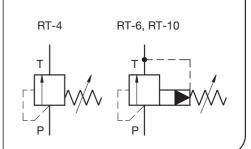
Ordering code

Nominal size

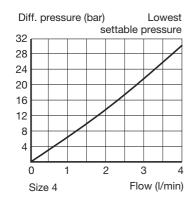
Size 4 = 4Size 6 = 6Size 10 = 10

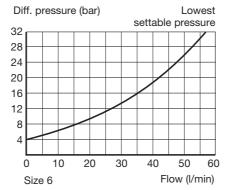
Pressure setting range

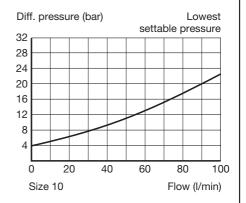
to 100 bar = 100 to 315 bar = 315

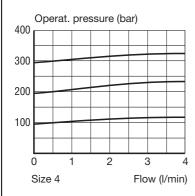

Seal type

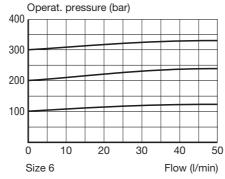
NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

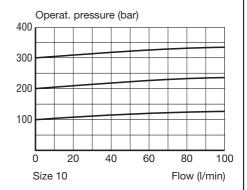

Technical data

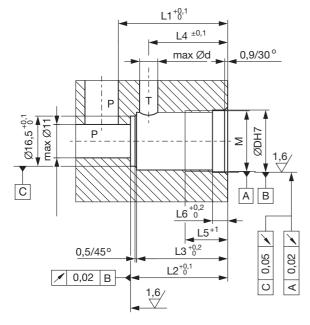

Size		4	6	10
Flow rate	l/min	4	60	100
Pressure setting range	bar	to 315	to 315	to 315
Oil temperature range	°C	-20 to +70	-20 to +70	-20 to+70
Viscosity range	mm²/s	15 to 380	15 to 380	15 to 380
Mass	kg	0,15	0,15	0,18
Filtration	NAS 1638	8	8	8

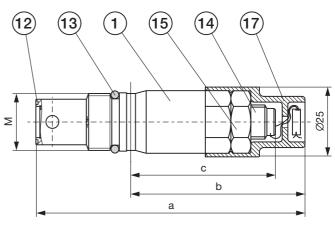

Symbol




\triangle p - Q Performance curves (measured at t = 50 °C and υ = 32 mm²/s)







Dimensions (mm)

- Housing
- 12. O-ring 13x1
- 13. O-ring, size 4,6 16.3x2,4 size 10 20x2,5
- 14. Pressure setting element
- 15. Counternut
- 17. PE cover

Tightening torque for fixing Md=30 Nm

The value set on the pressure setting element is protected by means of a lead stamp $\,$ @11 and a wire $\,$ @1,1 mm.

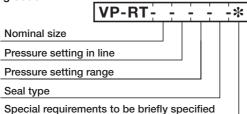
Note: Ports P and T can be located optionally at any place on the circumference.

Nominal size	а	b	С	d	D	L1	L2	L3	L4	L5	L6	М
size 4,6	96	64	53	6	20,5	36	32	30	26	14	4,8	M20x1
size 10	97	61	50	10,5	24,5	40	36	34	29,7	15	5,2	M24x1

PRESSURE RELIEF VALVE type VP-RT

- NS 6,10
- to 350 bar
- to 100 I/min
- Pilot operated
- Connecting dimensions to ISO 4401
- For vertical stacking sandwich plate design
- Two pressure setting ranges

VP-RT-10, VP-RT-6


Pilot operated pressure relief valves type VP-RT of sandwich plate design, for vertical stacking, are used for maintaining and limiting the maximum pressure in a hydraulic system.

These valves consist of a stack plate (1), pressure relief valve housing (2), main spool insert (3) with a spring (4), pilot poppet (5), spring (6) and pressure setting element (7). The P-line of this pressure relief valve is connected with the hydraulic system. The hydraulic medium pressure acts on the front side of the main spool insert (3). The bores (8,9) permit the introduction of pilot oil into the pressure chamber (10) and the application of pressure to the opposite side of the main spool insert.

This pressure relief valve remains in closed position till the system pressure exceeds the valve set at the spring (6). A pressure rise in the system above the value set by the pressure setting element (7), provokes the movement of the pilot poppet (5) of the seat, freeing the pilot oil discharge through the bores (9) and (11). A pressure drop in the pressure chamber (10) rises the main spool insert (3), thus clearing the hydraulic medium flow in the direction from port P towards port T.

Loosening of the pressure setting element is prevented by a counternut (12).

Ordering code

Nominal size

Size 6 = 6

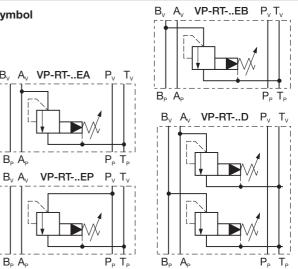
Size 10 = 10

Pressure setting in line

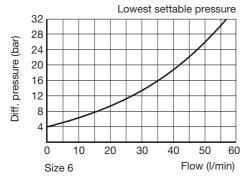
setting in line A = EA setting in line B = EB setting in line P = EP setting in line A and B (for size 6 only) = D

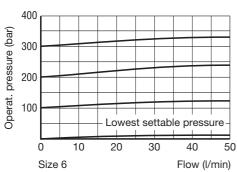
Pressure setting range

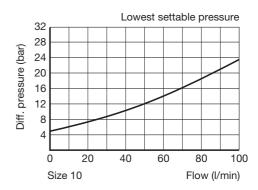
to 100 bar = 100to 315 bar = 315

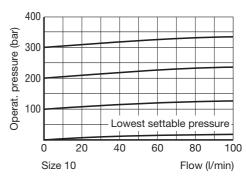

Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

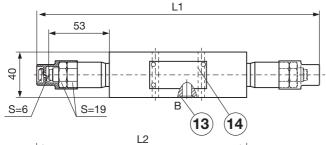

Technical data

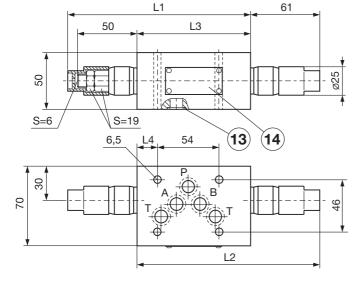

Size		6	10
Flow rate	l/min	50	100
Pressure setting range	bar	to 315	to 315
Oil temperature range	°C	-20 to +70	-20 bis +70
Viscosity range	mm²/s	15 to 380	15 to 380
Mass	kg	1,2-1,7(D)	2,6
Filtration	NAS 1638	8	8


Symbol

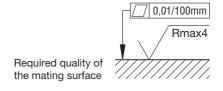


Δ p - Q Performance curves (measured at t = 50 °C and υ = 32 mm²/s)



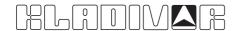


Dimensions (mm)


		LZ	
	64	L4 64	▶
		5,5 L5	
45		A B B G G G G G G G G G G G G G G G G G	ø25
		L3	*

	VP-RT-6-EA	VP-RT-6-EB	VP-RT-6-EP	VP-RT-6-D
L1	-	-	-	249
L2	154	-	-	-
L3	-	154	154	-
L4	90	90	90	121
L5	9	40,5	40,5	40

13. O-ring 9,25 x 1,78 14. Nameplate


The value set on the pressure setting element is protected by means of a lead stamp Ø11 and a wire Ø1,1 mm.

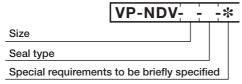
	VP-RT-10-EP	VP-RT-10-EA	VP-RT-10-EB
L1	156	161	-
L2	-	-	161
L3	95,5	100,5	100,5
L4	28,5	28,5	18


13. O-ring 12x2 14. Nameplate

The value set on the pressure setting element is protected by means of a lead stamp Ø11 and a wire Ø1,1 mm.

THROTTLE/CHECK VALVE type VP-NDV

- NS-6, 10
- to 350 bar
- to 100 l/min
- Connecting dimensions to ISO 4401
- For flow control in both service lines
- For throttling in supply and return lines
- For vertical stacking sandwich plate design Height and width of the valves to ISO 7790 norms

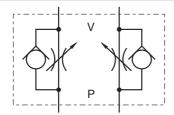


VP-NDV-10-.., VP-NDV-6-..

Description of operating

Throttle/check valves type VP-NDV are used for throttling the pilot and main flow of the hydraulic fluid in the line A and B. These valves consist of two throttling spools with setting screws and two check valves which are built in a housing. In direction V to P (see the hydraulic symbol) flows the hydraulic fluid with low pressure loss through the check valve. In direction P to V is the hydraulic fluid flow throttled depending on adjustment of the throttling spool.

Ordering code

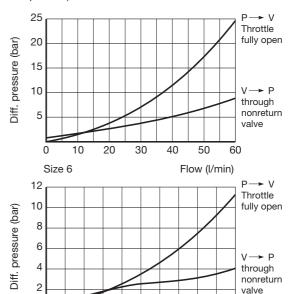

Size

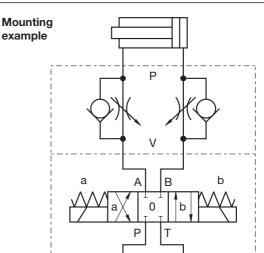
Size 6 = 6Size 10 = 10

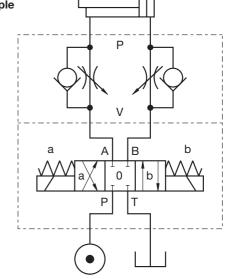
Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

Symbol




Technical data


Size		6	10
Flow rate	l/min	60	100
Operating pressure	bar	350	350
Cracking pressure	bar	0,4	0,4
Oil temperature range	°C	-20 to +70	-20 to +70
Viscosity range	mm²/s	15 to 380	15 to 380
Filtration	NAS 1638	8	8
Mass	kg	1,45	3,3

Performance curves

 Δ p - Q Performance curves of the flow in direction V to P (through the nonreturn valve with throttle closed) and in direction P to V (throttle in fully open position). Measured at t = 50 °C and v = 32 mm²/s

60

80

Flow (I/min)

100

20

0

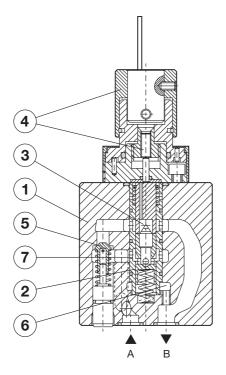
Size 10

40

Assembly instructions

Throttle/check valves type VP-NDV are designed for vertikal stacking. With these valves there can be throttling of the hydraulic fluid flow in return line or supply line achieved. Direction of throttling can be selected by turning the installation position of the valve i.e. valves size 6 turning 180° around the longitudial axis; valves size 10 turning 180° around the lateral axis (see drawing bellow). The O-ring plate is always mounted on the subplate side.

Dimensions (mm) 3 4 s=17 180° 160 Throttle closed 1. Nameplate Throttle opened 174 2. Throttle screw (clockwise rotation reduces the flow) 5.4-z=43. O-ring plate 32,5 4. O-ring ø 9,25x1,78-4 pcs 45 5. Fixing bores for fixing screws M5 24,5 12.7 41 34 closed opened 21,5 (5)30,2 40,5 3 2 4 • 180° 194 Throttle closed 210 Throttle opened 4 32,5 2 46 3,2 30,15 48 40 closed opened 16,7 5 27 37,3 1. Nameplate Regired quality of 2. Throttle screw (clockwise 50,8 the mating surface rotation reduces the flow) 0,01/100 mm 54 3. O-ring plate 4. O-ring ø 12,42x1,78-5 pcs Rmax 4 5. Fixing bores for fixing screws M6


FLOW CONTROL VALVE type TVD

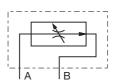
- NS 6
- to 350 bar
- to 16 l/min
- Two way pressure compensated
- Connecting dimensions to ISO 4401
- Operating elements: rotary knob / roller
- With built in non-return valve
- Without built in non-return valve

TVD-6

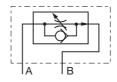
Description of operation

Flow control valves type TVD are used to set the flow of the hydraulic fluid. The flow depends neither on inlet nor on outlet pressures, which means that the flow setpoint valve remains constant also with a change of the pressure drop.

These valves consist of a housing (1), a pressure compensator (2), an orifice (3), a setting element (4), and a non-return valve (5).

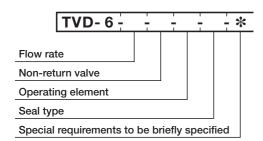

The hydraulic fluid flow is adjusted by a setting element (4) which moves the orifice (3) to the corresponding open position. The flow of the fluid is throttled in the direction from A to B. Maintaining of the constant flow towards the user is provided by the pressure compensator (2). The fluid flows through the bore (6) under the pressure compensator, acting on it by the pressure of the line B. From the opposite side, the pressure compensator is acted upon by the pressure which is before the orifice (3). The pressure compensator shifts the working position. A pressure built - up in the line B provokes the movement of the pressure compensator to the increased open position. This enlarges the gap between the bores (7), the orifice (3) and the user. On the contrary, the pressure compensator shifts to the closed position if there is a pressure rise in the line A. The hydraulic fluid flow is constant, and does not depend on the loads on the user.

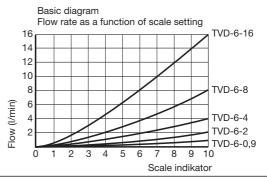
The non-return valve (5) provides a free flow of the hydraulic fluid in the direction from B to A.


The flow control valve without the non-return valve (5) provides operation of the valve only in the direction of the flow from A to B.

Symbol

TVD-6-NV


Detailed


Tehnical data

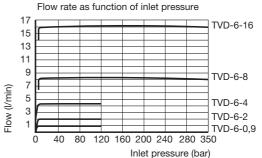
Туре		TVD-6-0,9	TVD-6-2	TVD-6-4	TVD-6-8	TVD-6-16
Flow rate I/min		0,9	2	4	8	16
Min. pressure drop	bar	4	4	10-12	10-14 10-16	
Operating pressure	bar	to 100	to 100	to 100	to 350	
Oil temperature range	°C	-20 to +70				
Viscosity range	mm²/s	15 to 380				
Mass	kg	1,6				
Filtration	NAS 1638	8				

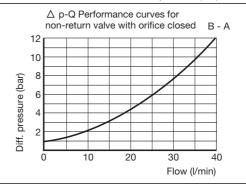
△ p - Q Performance curves (measured at t = 50 °C and v = 32 mm²/s)

Flow rate

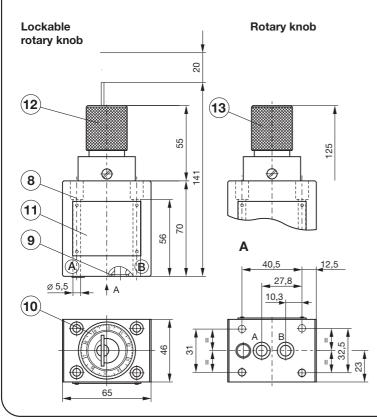
to 0,9 l/min = **09** to 2 l/min = 2 to 4 I/min = 4 to 8 I/min = 8 to 16 l/min = 16

Non-return valve

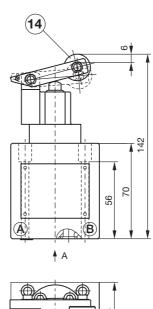

without nonreturn valve = no design. with nonreturn valve = NV


Operating element

Lockable rotary knob = no desig. Rotary knob = R Roller = K


Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 and ISO 15380



Dimensions (mm)

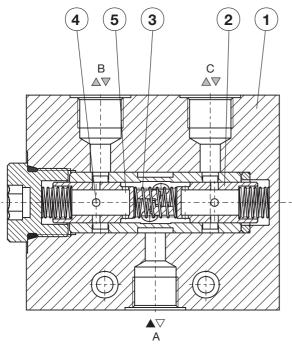
Roller

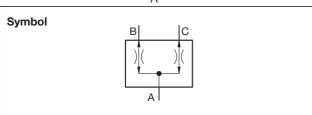
46 65

- 8. 4 pcs fixing screws M5 x 65 to **DIN EN ISO 4762-**10.9 tightening torque Md=9 Nm
- 9. O-ring 9,25 x 1,78
- 10. Scale for setting read - out
- 11. Nameplate
- 12. Lockable rotary knob
- 13. Rotary knob
- 14. Roller



Required quality of the mating surface


FLOW DIVIDER Type DTP

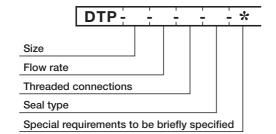

- NS 6, 10
- to 350 bar
- to 70 I/min
- Dividing and combining of flow independent of pressure
- Dividing and combining ratio: 50 %: 50 %
- Direct in-line mounting
- Threaded connection to ISO 9974, ISO 1179

DTP-10, DTP-6

Description of operation

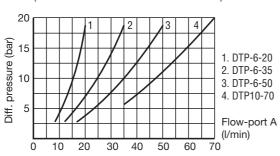
The flow divider DTP has two function, dividing and combining of fluid flow. The regulator divides the fluid flow in the direction from A to B and C, and combines flows in the direction from B and C to A. The dividing / combining ratio is 50 %: 50 %, independent of pressure in respective pipeline, B or C.

The regulator consists of a housing (1), two dividing spools (2) and three weak springs (3).


Division of flow: The fluid flow in the direction from A to B and C. The flow in chamber A is divided and flows through the orifices (5) with constant cross-section and throttles (4) into chambers B and C. The pressure drop through the orifices (5) depends on the pressure load. The increase of flow towards one of both chambers provokes increased pressure drop through the orifices. The pressure drop generates the pressure force which shifts both spools (2). Consequently, the throttles (4) are reduced, and the pressure drop of fluid through the throttles increases. The spools keep on moving until the pressure drops through the orifices (5) are balanced. Consequently, both fluid flows are balanced, too.

Combining of flows: The oil flow in the direction from B and C to A. The operation is identical as at dividing of flow. The divider combines both flows in the ratio 50% to 50%.

The principle of operation depends on the pressure drop, which again depends on the fluid flow. For this reason the divider functions properly only within the defined flow range. Limitation of maximal flow - rate of pressure drop, limitation of minimal pressure - dividing and combining accuracy.


Technical data

		DTP-6-20	DTP-6-35	DTP-6-50	DTP-10-70	
Min. flow rate	l/min	8	12	16	35	
Max. flow rate	l/min	20	35	50	70	
Max. pressure range	bar	350				
Dividing	%	50 : 50				
Flow dividing accuracy	%	±5				
Oil temperature range	°C	-20 to +70				
Viscosity range	mm²/s	15 to 380				
Filtration	NAS 1638	8				
Mass	kg	1,7	1,7	1,7	2,65	

Δp - Q Performance curves

(measured at t = 50 °C and υ = 32 mm²/s)

Size

Nominal size 6 = 6 Nominal size 10 = 10

Flow rate

8 - 20 l/min = 20 12 - 35 l/min = 35 DTP-6

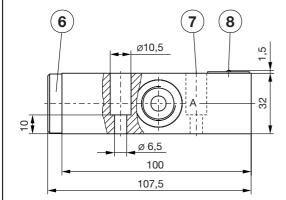
16 - 50 l/min = 50

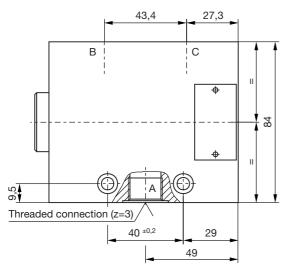
DTP-10 35 - 70 l/min = 70

Threaded connections

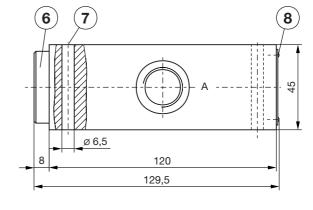
DTP-6 M 18x1,5 = no desig.

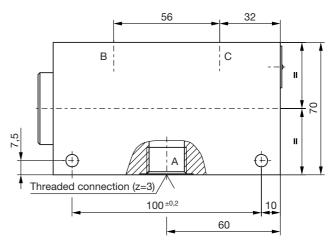
G 3/8 = G 3/8


DTP-10 M22x1,5 = M 22 G 1/2 = G 1/2


Seal type

= no desig. NBR seals for mineral oil HL, HLP, to DIN 51524 FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380


Dimensions (mm)


DTP-6

DTP-10

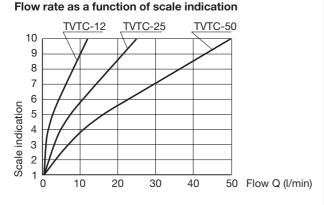
- 6. Valve cap
- 7. Two fixing holes for screws DIN EN ISO 4762 DTP-6 = M6x20-10.9DTP-10 = M6x55-10.9
 - Tightening torque Md = max. 15 Nm
- 8. Nameplate

FLOW CONTROL VALVE type TVTC

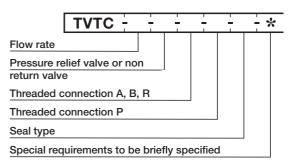
- to 350 bar
- to 50 I/min
- Three-way pressure compensator
- Operating element: rotary knob
- Without built in relief valve and non return valve
- With built in relief valve
- With built-in non return valve
- Threaded connection to ISO 9974, ISO 1179

TVTC-..

Description of operation


3-way compensated flow control valve enables setting of constant fluid flow on port A irrespective of the pressure variations. The excessive flow rate is discharged to port B and can be used as a secondary working port or return port to a tank

When the port B is used as a secondary working port the


pressure must not exceed the pressure on port A.

A pressure relief valve in valve type TVTC-..-VV limits the pressure in port A on the set valve. The excessive flow rate is discharget over port R to a tank.

The non return valve in valve type TVTC -..-NV provides a free flow of the hydraulic fluid in the direction from A to P.

Ordering code

Flow rate

1 to 50 l/min = **50**

1 to 25 l/min = 25

1 to 12 l/min = 12

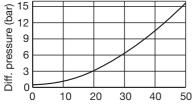
Pressure relief valve or non return valve

without relif valve = no design

with relief valve 4 to 175 bar = VV17

with relief valve 10 to 350 bar = VV35 with non return valve

Threaded connections

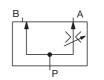

A, B, R - G1/2 (Ø34/1) = 1/2

P - G3/4 (Ø36/0,2)

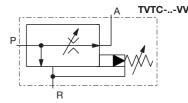
Seal type

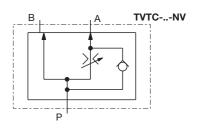
NBR seals for mineral oil HL,HLP to DIN51524 = no design FPM seals for HETG,HEES,HEPG to VDMA24568 = E and ISO 15380

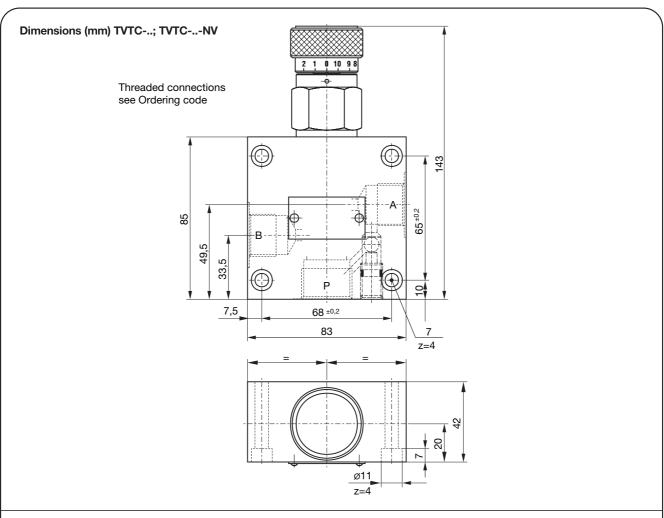
Δp-Q Performance curve for non return valve

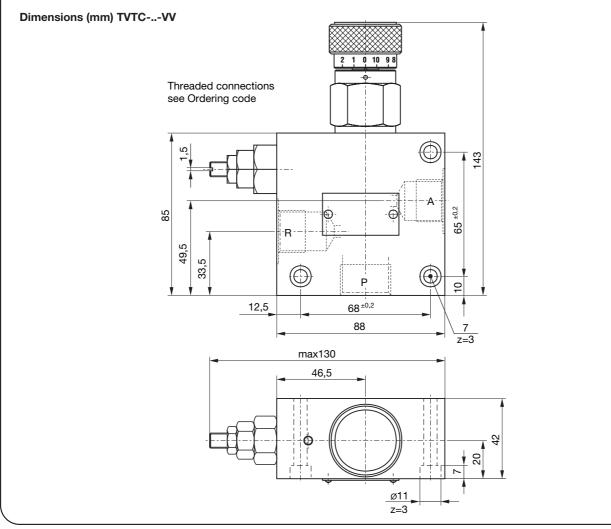


50 Flow Q (I/min)


Technical data


Туре		TVTC-12	TVTC-25	TVTC-50			
Flow rate A	l/min	1 to 12	1 to 25	1 to 50			
Max. flow rate P	l/min	32	65	65			
Operating pressure	bar		5 to 350				
Diff. pressure	bar		to 5,5				
Cracking press. for non ret. v.	bar	to 0,5					
Flow stability (5 to 350 bar)	%		±5 (Q)				
Oil temperature range	°C		-20 to +70				
Viscosity range	mm²/s		15 to 380				
Filtration	NAS 1638	8					
Mass	kg	2 (TVTC; T\	/TCNV) 3	(TVTCVV)			

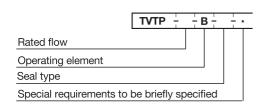

Symbol



TVTC-..

FLOW CONTROL VALVE type TVTP-...-B-...

- to 350 bar
- to 90 I/min
- Three-way pressure compensated
- Operating element: rotary knob
- For independent fitting into a block



TVTP-...-B-...

Description of operation

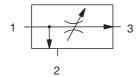
TVTP three-way flow regulators are used to regulate the priority flow in outlet 3 to a maximum adjustable level largely independent of the load and pressure conditions. The surplus flow is diverted to the bypass port 2. The bypass flow may be used for a secondary circuit. Whether the pressure in secondary circuit is higher than the regulated pressure the valve works as two-way regulator.

Ordering code

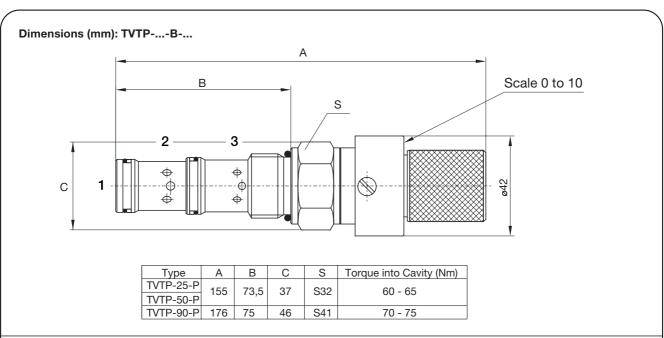
Rated flow

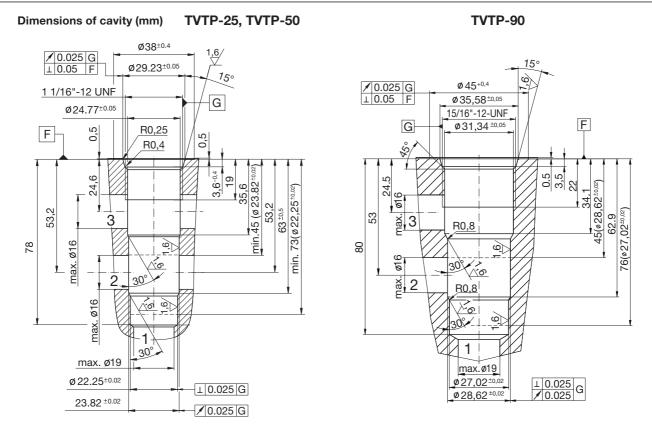
25 l/min = **25** 60 l/min = **60**

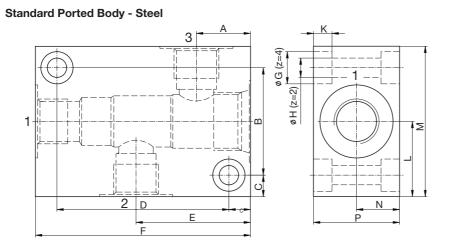
90 l/min = **90**


Operating element

rotary knob = **B**


Seal type


NBR seals for mineral oil HL,HLP to DIN 51524 = **no design.** FPM seals for HETG,HEES,HEPG to VDMA 24568 = \bf{E} and ISO 15380


Symbol:

Type		TVTP-25-B	TVTP-60-B	TVTP-90-B		
Rated flow 3	l/min	25	25 60 9			
Flow rate 1 max.	l/min	60 90 150				
Operating press. max.	bar		35	50		
Oil temperature range	°C		-20 to	+70		
Viscosity range	mm²/s		15 to	380		
Filtration	NAS 1638	8				
Mass	kg	0.6 1				

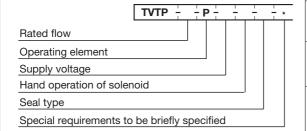
	ORDERIN	G CODE
	P-TVTP-50	P-TVTP-90
Α	25,1	25
В	50	65
С	10	15
D	80	80
Е	53,2	53,5
F	100	110
G	15	17
Н	9	11
K	8,6	10,6
L	35	47,5
М	70	95
N	20	26
Р	40	52
כ	G 1/2	G 1

Dimensions (mm)

Threaded connections ISO 1179-1.

FLOW CONTROL VALVE type TVTP-...-P-...

- to 210 bar
- to 50 I/min
- Three-way pressure compensated
- Operating element: proportional solenoid
- Control electronics: Amplifier R59209NP221
- For independent fitting into a block
- Plug-in connector for solenoids to ISO 4400
- Protection of solenoid IP 54 to DIN EN 60529 (IP 65 on request)


TVTP-...-P-...

Description of operation

TVTP three-way flow regulators are used to regulate the priority flow in outlet 3 to a maximum adjustable level largely independent of the load and pressure conditions. The surplus flow is diverted to the bypass port 2. The bypass flow may be used for a secondary circuit.

Whether the pressure in secondary circuit is higher than the regulated pressure the valve works as two-way regulator.

Ordering code

Rated flow

25 l/min = **25**

50 l/min = **50**

90 l/min = **90**

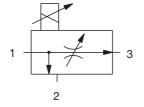
Operating element

proportional solenoid = P

Supply voltage

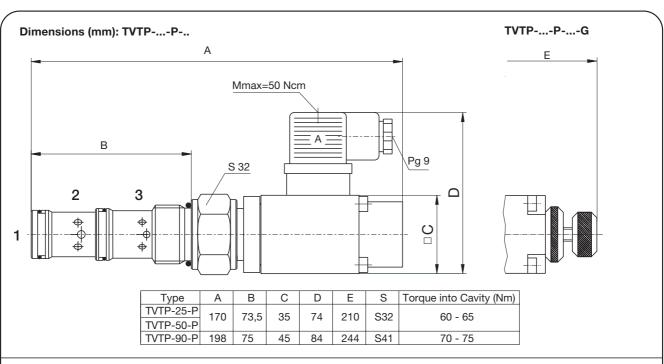
12V direct voltage = **12DC** 24V direct voltage = **24DC**

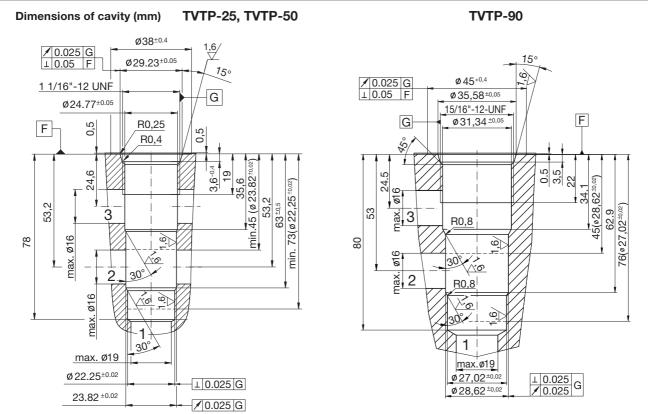
Hand operation of solenoid

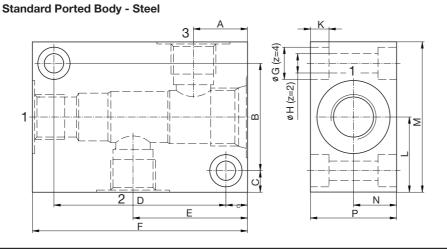

without hand operation = no design.

with hand operation = G

Seal type


NBR seals for mineral oil HL,HLP to DIN 51524 = no desing. FPM seals for HETG,HEES,HEPG to VDMA 24568 = $\bf E$ and ISO 15380


Symbol:

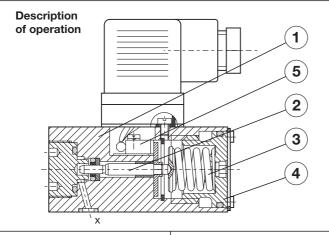


Туре		TVTP-25	TVTP-50	TVTF	P-90	
Rated flow 3	l/min	25	50	90)	
Flow rate 1 max.	l/min	60	90	15	0	
Operating pressure max.	bar		21	10		
Hysteresis	%		</td <td> 5</td> <td></td>	 5		
Oil temperature range	٥C		-20 to	+70		
Viscosity range	mm²/s		15 to	380		
Filtration	NAS 1638		7	,		
Mass	kg	1 (TV7	1 (TVTP) 1,6 (TVT			
IVIASS	ĸy	1.2 (T\	/TPG)	2 (TVT	PG)	
Supply voltage	V	12DC	24DC	12DC	24DC	
Limiting power	W	17,	4	20	,8	
Rated current	Α	1,25 0,68 1,79 0,8				
Coil resistance at 20 °C	Ohm	7,2	24,6	4,3	21	
Rating ED	%		100			

Dimensions (mm)

	ORDERIN	G CODE
	P-TVTP-50	P-TVTP-90
Α	25,1	25
В	50	65
С	10	15
D	80	80
Ε	53,2	53,5
F	100	110
G	15	17
Н	9	11
K	8,6	10,6
L	35	47,5
М	70	95
N	20	26
Р	40	52
U	G 1/2	G 1

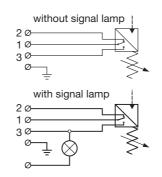
Threaded connections ISO 1179-1.



PRESSURE SWITCH type TS

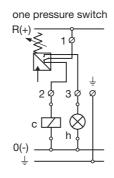
- NS 4
- to 400 bar
- Minimal dimensions
- Four pressure ranges
- Three mounting methods (horizontal, vertikal, built into pipeline
- Tree pressure setting methods (by means of Allan key, knob, or lockable knob)
- Lockable pressure setting
- Operation supervision by means of signal lamp
- Plug-in connector for solenoids to ISO 4400

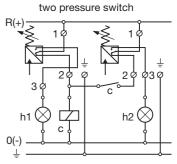
TS-4, VP-TS-4


Pressure switches type TS are used for switching electric circuits on and off, respectively, depending on the flow rate in the hydraulic system. These switches can be mounted as control or monitoring elements. When the pressure switch is used as monitoring element, the operation of hydraulic systems can be supervised by means of light or sound signals.

The TS type pressure switch consist of a housing (1), a piston (2), a spring (3), a setting knob (4) and a microswitch (5). Pressure acts on the piston (2), pushing it against the spring (3). When the piston force excedes the preset tension of the spring, the microswitch (5) turns the electric power on, or respectively, off. The tension and thereby the switching - on and off pressure rates can be preset by means of the setting knob (4).

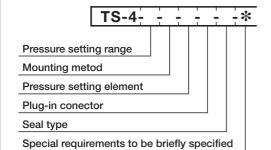
Symbol




Circuit diagram

Mounting example

h, h1, h2 - control lamps c - relay (contactor)


Туре		TS-4-70	TS-4-160	TS-4-250	TS-4-400	
Size						
Min. pressure at pressure rise	bar	< 9	< 17	< 20	< 25	
Max. pressure at pressure rise	bar	70±2	160±4	250±6	400±10	
Hysteresis at max. pressure	bar	≤ 8,5	≤ 15	≤ 20	≤ 25	
Hysteresis at min. pressure	bar	≤ 4	≤ 8	≤ 10	≤ 13	
Max. pressure	bar	400	400	500	500	
Repeating accuracy	%		< :	±1		
Shift frequency	min ⁻¹		to ⁻	120		
Oil temperature range	°C		-20 to	o +70		
Viscosity range	mm²/s	15 to 380				
Mass	kg	0,2 to 0,4				
Filtration	NAS 1638		3	3		

Hydraulic Electrical

	Switching capacity									
Alerna	ating c	urrent	Dire	Direct current						
Voltage	Ohm load	Inductive load	Voltage	Ohm load	Inductive load					
V	Α	Α	V	Α	Α					
			to 15	10	10					
			30	7	5					
			50	2	2					
			75	1	1					
125	7	5	125	0,5	0,06					
250	7	5	250	0,2	0,03					

Ordering code

Pressure setting range

to 70 bar = 70to 160 bar = 160to 250 bar = 250to 400 bar = 400

Mounting method

vertical horizontal = H built-in = N

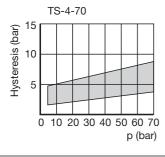
Pressure setting element

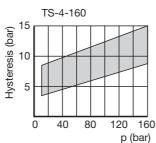
Allan key Knob = B Lockable key = C

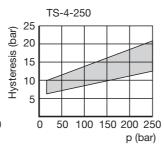
Plug-in conector = no design. without signal lamp

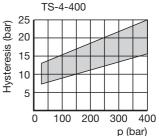
with signal lamp: 12, 24 V 48 V = L48110, 230 V = L230

= L24

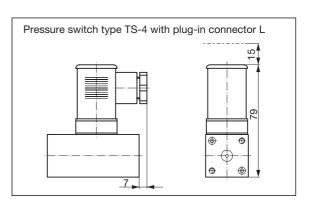

Note:

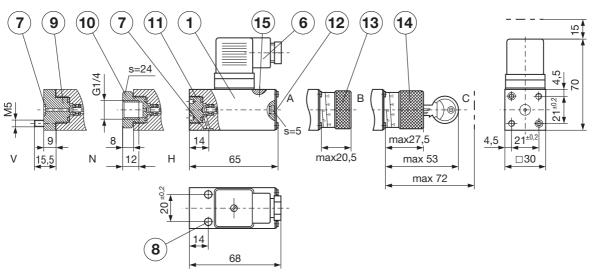

The signal lamp is adapted to AC and DC voltage. With DC voltage, the polarity must be observed.


Seal type


NBR seals for mineral oil HL, HLP, to DIN 51524 = no desig. FPM seals for HETG, HEES, HEPG to VDMA 24568 = E and ISO 15380

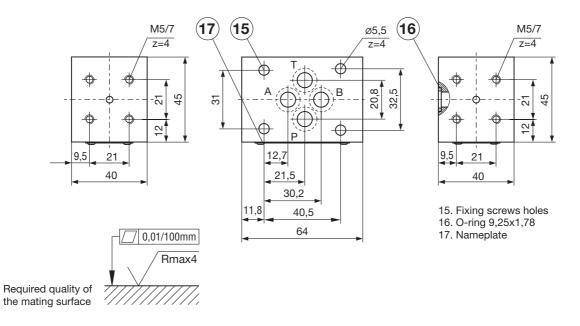
Hysteresis (measured at t = 50 °C and $v = 32 \text{ mm}^2/\text{s}$)

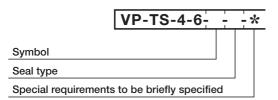




Dimensions (mm)

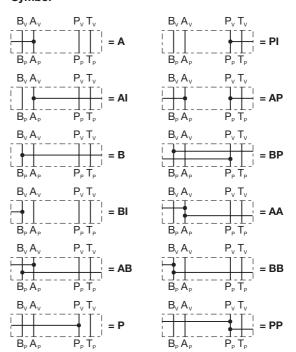
- 1. Pressure switch body
- 6. Plug-in connector
- 7. O-ring 5x1,5
- 8. Fixing screws holes, 2 pcs M5x40 to DIN EN ISO 4762-10.9 Tightening torque Md=9 Nm (not included)
- 9. Fixing the switch to stacking sandwich plate
- 10. Instalation into line
- 11. Fixing the switch to subplate
- 12. Pressure setting by means of Allan key
- 13. Pressure setting by means of knob
- 14. Pressure setting by means of lockable knob
- 15. Screw for protection of the seat pressure



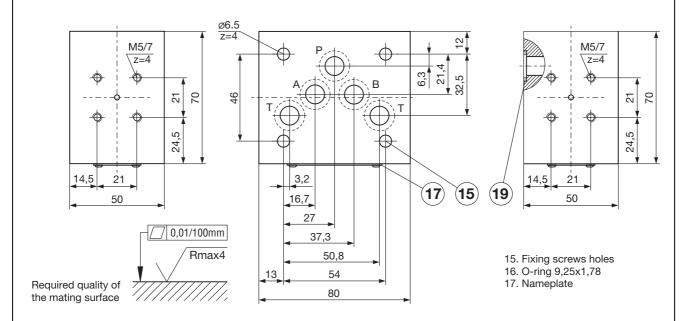


STACKING SANDWICH PLATE type VP-TS-4-6

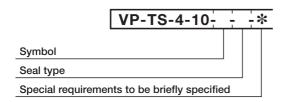
Dimensions (mm)


Ordering code

Seal type

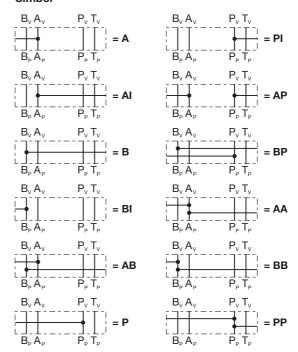

NBR seals for mineral oil HL, HLP, to DIN 51524 $\,=\,$ no design. FPM seals for HETG, HEES, HEPG to VDMA 24568 $\,=\,$ E and ISO 15380

Symbol



Size		6
Flow	l/min	80
Pressure	bar	400
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Mass	kg	0,9
Filtration	NAS 1638	8

STACKING SANDWICH PLATE type VP-TS-4-10

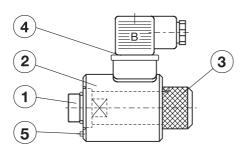

Ordering code

Seal type

NBR seals for mineral oil HL, HLP, to DIN 51524 $\,=\,$ no design. FPM seals for HETG, HEES, HEPG to VDMA 24568 $\,=\,$ E and ISO 15380

Simbol

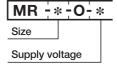
Size		10
Flow	l/min	120
Pressure	bar	400
Oil temperature range	°C	-20 to +70
Viscosity range	mm²/s	15 to 380
Mass	kg	2,1
Filtration	NAS 1638	8


DIRECT CURRENT SOLENOIDS FOR HYDRAULICS type MR

- Fast and simple instalation
- Reliable functioning in every position
- Long life span
- Solenoid screws into valve block
- Removable coil
- Corresponding to VDE 0580 recommendations
- Plug-in connector corresponding to EN 175301-8003 standards
- MR 045 fulfil EMC (89/336/EEC)

MR-060, MR-045

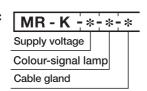
Description of operation


Ordering code

1. Core:



Note: - For DC and AC voltage the same core is used.


2. Coil:

3. Retaining nut:

4. Plug-in connector:

Example: MR-045-J, MR-045-O-12DC, MR-045-M,

MR-K-24AC-L

Note: - Every part of the solenoid (position 1-4) has to be ordered separately.

A piston that can move freely lengthwise, is placed in an oiltight core (1). A coil (2) protected by housing surrounds the core. The plug-in connector (4) is fixed to the housing. The coil is fixed on the core by retaining nut (3) and protected against against rotation with a pin (5).

This type of solenoid is used for controlling of directional control valves. They are activated by passing electric current through the solenoid's coil. For manually operation of the solenoid, there is the emergency switch at the back of the solenoid. Solenoids are of "push-design". When the solenoid is activated the piston pushes the piston rod out of it. The force with which the piston pushes at various points of its stroke (solenoid's movement) is given in the tables. The solenoids are designed for direct current. If a rectifier bridge is added, the alternating current can also be used. They are built for voltages of 12, 24, 48, 110 and 230V. Allowed deviation from the nominal voltage is within -10 to + 5%. Their intermittence is 100% at the ambient temperature of 40°C. When the ambient temperature is increased the intermittence is correspondingly lowered. If the buyer so wishes, solenoid for different voltages and intermittence can be delivered. Solenoids have the degree of protection of enclosures IP 65 (IEC). They are tested to the pressure of 210 bar. Their life span in normal working conditions is 107 operations.

Size

ø 45 mm = **045** ø 62 mm = **060**

Supply voltage

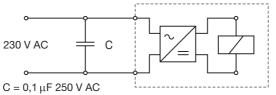
direct v	oltage	alternatii	ng voltage
24 V	= no desig.	12 V	= 12 AC
12 V	= 12 DC	24 V	= 24 AC
48 V	= 48 DC	48 V	= 48 AC
110 V	= 110 DC	110 V	= 110 AC
230 V	= 230 DC	230 V	= 230 AC *

Hand operation of solenoid

without hand operation = no design with hand operation = G

Colour-signal lamp

grey - without signal lamp = A black - without signal lamp = B transparent - with signal lamp = L

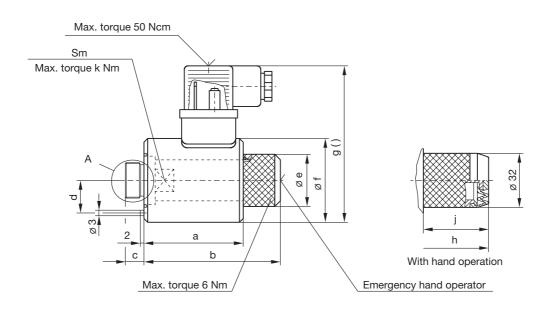

Cable gland

Pg 9 = no design Pg 11 = **11**

* see Note (next page)

Note:

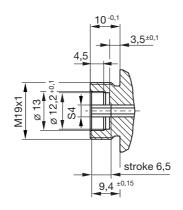
* To fulfil EMC (89/336/EEC) a capacitor must be built in when using the solenoid with supply voltage 230 V, AC

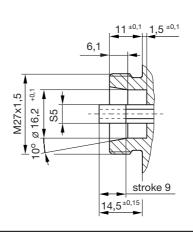

Solenoid with rectifier bridge

Technical data

Type of		Force F at 90% Un, and working temperature when ED is 100%							Power	Pres-	Inter-	Mass		
solenoid		Stroke							Р	sure	mitence			
	0 mm	1 mm	2 mm	3 mm	4 mm	5,5 mm	6 mm	7 mm	8 mm	9 mm				
	N	N	N	N	N	N	N	N	N	N	W	bar	%	kg
MR-045	100	75 (70)	60 (50)	30 (20)	20 (10)	8 (5)	5 (3)				29*	210	100	0,6
MR-060	240	130	140	140	85	50	35	23	18	13	45	210	100	1,6

^{* - 12} V supply voltage - 36 W


Dimensions (mm)


	а	b	C ^{±0,1}	d +0,1	øe	øf	g()	h	j	k	Sm
MR-045	53	73	10	17,5	30	45	85 (91)	87	34	30	20
MR-060	72	107	11	23,9	40	62	103 (109)	122	50	50	27

() - AC supply voltage

A MR-045

A MR-060

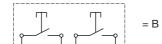
^{() - 230} V AC supply voltage

CONTROL LEVER WITH SWITCHES, typ KRSS

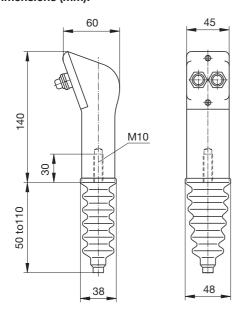
- Switching capacity 5 A by 12 V
- Fast and simple installation

KRSS-CO10-B

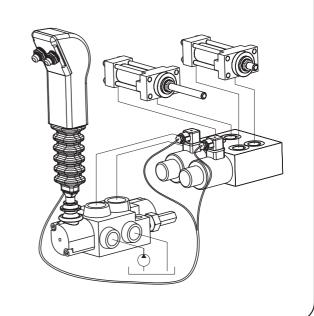
Description of operation:


Control lever with switches provides control of the valve with direct mechanical operation and optional control of valves with direct solenoid operation. The lever is usually mounted on the operating pin lever of the valve with direct mechanical operation. The optional thumb switches mounted on the control lever have to be connected with power supply and solenoids on solenoid valves. The valve with direct mechanical operation is activated by deflection of the control lever. The solenoid valves are activated by pressing of thumb switches mounted on the control lever.

Technical data:


Material	Black plastics				
Mounting	Inner thread M10				
Switching capacity	5A by 12 V				
El. terminals	FASTON A6,3-0,8 EN 61210				

Ordering code:

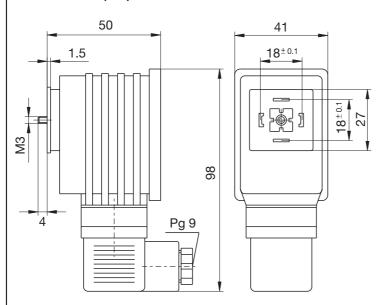

Combinations of switches:

Dimensions (mm):

Mounting example:

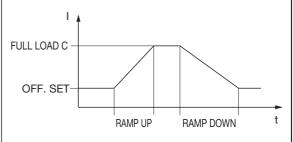
AMPLIFIER FOR SUPPLY OF THE PROPORTIONAL SOLENOID type R59209NP221

- Plug-in connector for solenoids to ISO 4400

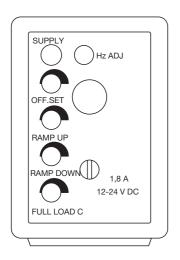


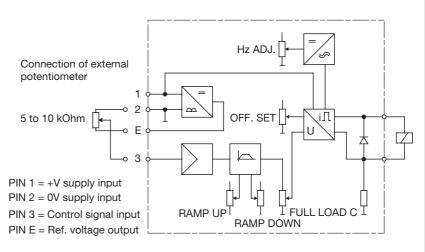
R59209NP221

Description of operation


These switch mode units provide stepless control for proportional valves. Start current (OFF.SET) and full load current (FLC) can be individually preset. The current in the solenoid is substantially independent of changes in solenoid resistance and supply voltage variation. The inherent Dither, due to switch-mode operation helps to overcome friction effects in the solenoid. Ramp controls are fitted to give up to 10 seconds for the current in the solenoid to built up to its full load value, or to return to the offset point.

Dimensions (mm):

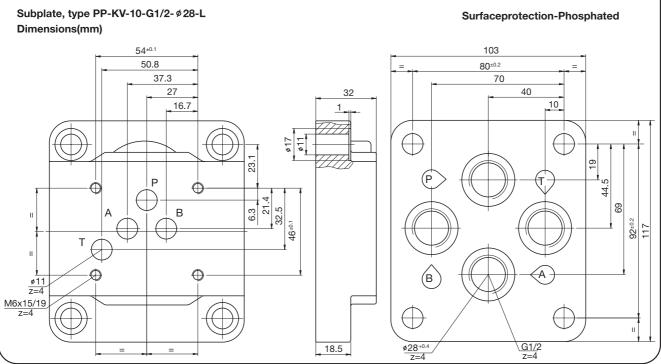


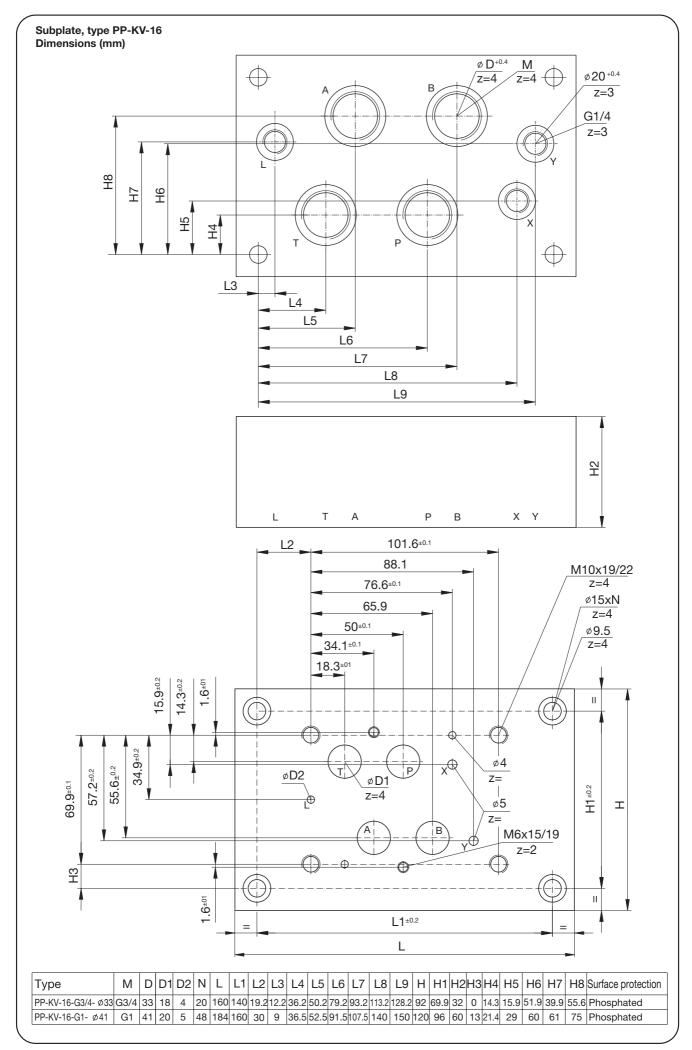

Technical data

Switching frequency	Hz	100500		
Two reg. ramp up and ramp dov	sec	010		
Operating temperature rang	°C	-5+80		
Storage temperature range	°C	-45+100		
Power supply voltage	Power supply voltage			
Control signal		V DC	010	
Full load current		mA	1800	
Offeet venue	12 V	mA	0900	
Offset range	24 V	IIIA	0600	

Connection and adjustment elements



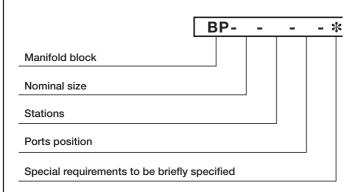

SUBPLATES


- NS 6, 10, 16 to 350 bar
- to 300 I/min
- Connecting dimensions to ISO 4401 Threaded connection to ISO 1179

PP-KV-6, PP-KV-10, PP-KV-16

MANIFOLD BLOCKS type BP

- NS 6, 10
- to 350 bar
- Connecting dimensions to DIN 24340, ISO 4401
- Port type; BSPP: ISO 1179-1
- Mounting position unrestricted (valve axis preferably horizontal)
- Because of the large drilling diameters the pressure drop through the manifolds is very low.


BP-6-4-S

Description

Manifold blocks serve for transmission of hydraulic fluid from source to valves. On the block can be two or up to seven valves (NS 10) or up to eight valves (NS 6) mounted in parallel connection.

Manifold blocks are used for easily realizing of hydraulic circuits without piping between valves and minimal overall dimensions.

Ordering code

Note: Max. pressure depend on type of used seals.

Nominal size

Size 6 (CETOP 3) = 6A + B = G3/8; spotface ø 28/1 P + T = G1/2; spotface ø 34/1

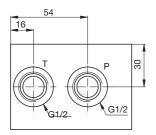
Size 10 (CETOP 5) = 10 A + B = G1/2; spotface Ø 34/1 P = G3/4; spotface Ø 42/1 T = G1 ; spotface Ø 47/1

Stations

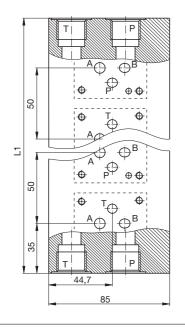
1 station = 1 5 station = 52 stations = 26 stations = 63 stations = 37 stations = 74 stations = 48 stations = 8

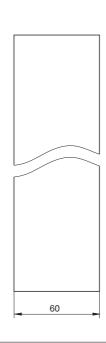
* for NS 10 up to 7 stations

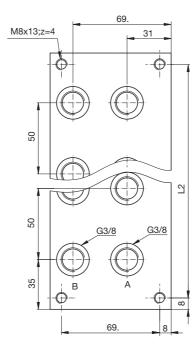
Ports position

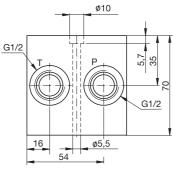

Rear = no desig. Side = S

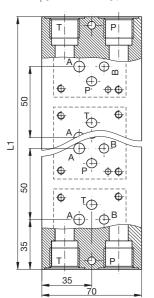
Symbol

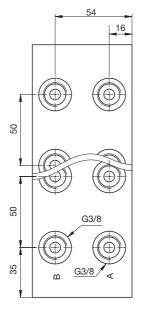


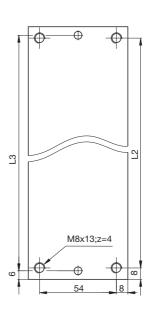

Dimensions (mm)


BP-6-...-

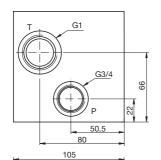

Code	Nominal	Stations	L1 (mm) L2 (mr		Ports	size	Mass (kg)
Code	size	Stations	L1 (IIIII)	LZ (IIIII)	P, T	A, B	iviass (kg)
BP-6-1	6	1	70	54	G1/2	G3/8	2,3
BP-6-2	6	2	120	104	G1/2	G3/8	3,9
BP-6-3	6	3	170	154	G1/2	G3/8	5,5
BP-6-4	6	4	220	204	G1/2	G3/8	7,2
BP-6-5	6	5	270	254	G1/2	G3/8	8,8
BP-6-6	6	6	320	304	G1/2	G3/8	10,5
BP-6-7	6	7	370	354	G1/2	G3/8	12,1
BP-6-8	6	8	420	404	G1/2	G3/8	13,7

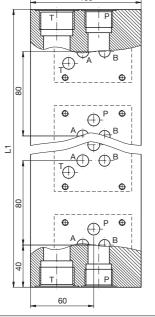


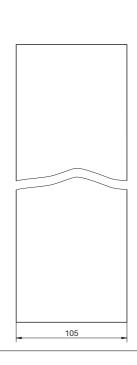


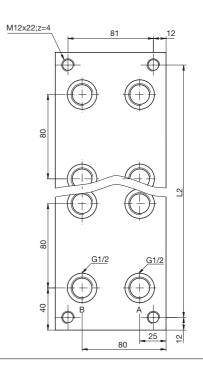

BP-6-....-S

Code	Nominal	Stations	1.1 (mm)	(mm) L2 (mm) L3 (mm)		Ports	s size	Mass (kg)	
Code	size	Stations	L1 (IIIIII)	L2 (IIIII)	L3 (IIIII)	P, T	A, B	iviass (Kg)	
BP-6-1-S	6	1	70	54	58	G1/2	G3/8	2,3	
BP-6-2-S	6	2	120	104	108	G1/2	G3/8	3,9	
BP-6-3-S	6	3	170	154	158	G1/2	G3/8	5,5	
BP-6-4-S	6	4	220	204	208	G1/2	G3/8	7,2	
BP-6-5-S	6	5	270	254	258	G1/2	G3/8	8,8	
BP-6-6-S	6	6	320	304	308	G1/2	G3/8	10,5	
BP-6-7-S	6	7	370	354	358	G1/2	G3/8	12,1	
BP-6-8-S	6	8	420	404	408	G1/2	G3/8	13,7	



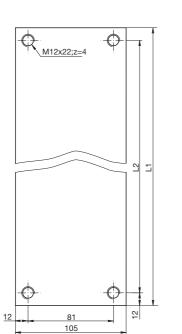

Dimensions (mm)

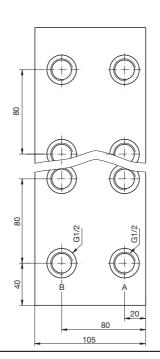

BP-10-....

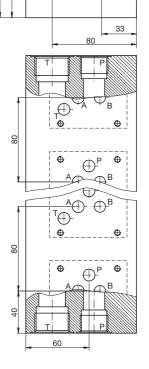


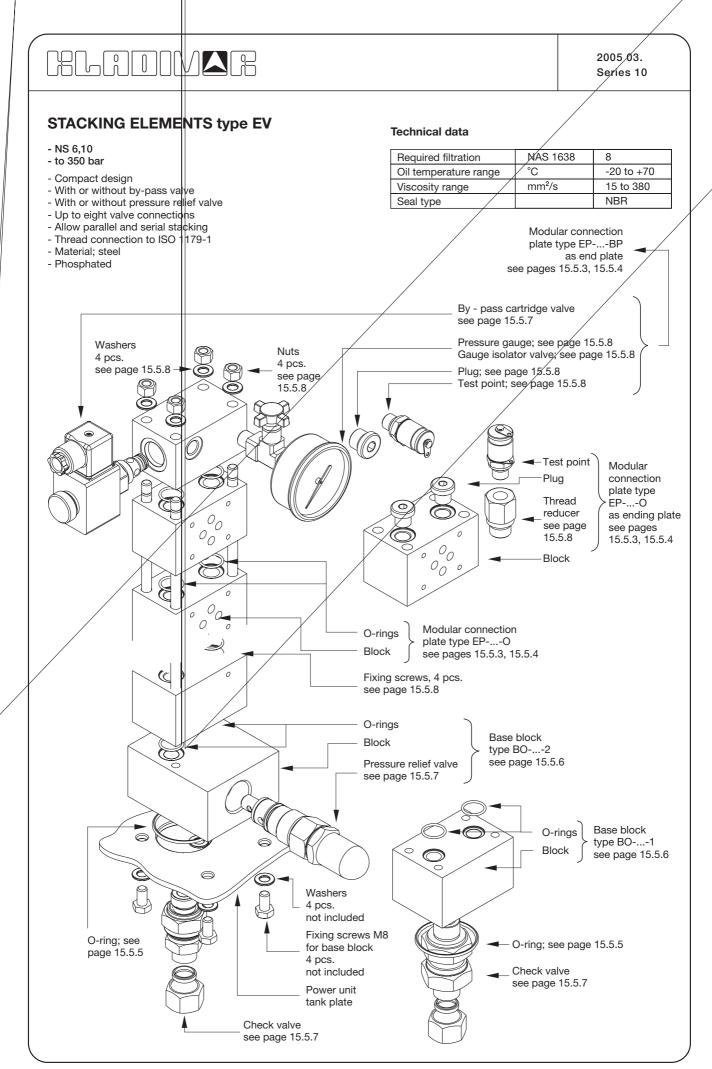
Code	Nominal	Stations	I 1 (mm)	L1 (mm) L2 (mm)		Ports size			
Code	size	Stations	L1 (111111)	LZ (IIIII)	Р	A, B	Т	Mass (kg)	
BP-10-1	10	1	80	56	G3/4	G1/2	G1	5,9	
BP-10-2	10	2	160	136	G3/4	G1/2	G1	11,8	
BP-10-3	10	3	240	216	G3/4	G1/2	G1	17,7	
BP-10-4	10	4	320	296	G3/4	G1/2	G1	23,5	
BP-10-5	10	5	400	376	G3/4	G1/2	G1	29,4	
BP-10-6	10	6	480	456	G3/4	G1/2	G1	35,3	
BP-10-7	10	7	560	536	G3/4	G1/2	G1	41,2	

65

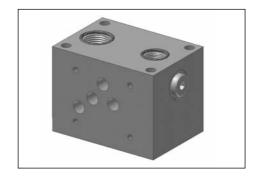







BP-10-....-S

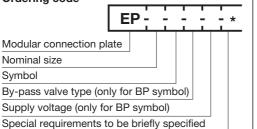
Code	Nominal	Stations	L1 (mm)	L2 (mm)		Mass (kg)		
Code	size	Stations	L1 (111111)	LZ (IIIII)	Р	A, B	Т	iviass (kg)
BP-10-1	10	1	80	56	G3/4	G1/2	G1	5,9
BP-10-2	10	2	160	136	G3/4	G1/2	G1	11,8
BP-10-3	10	3	240	216	G3/4	G1/2	G1	17,7
BP-10-4	10	4	320	296	G3/4	G1/2	G1	23,5
BP-10-5	10	5	400	376	G3/4	G1/2	G1	29,4
BP-10-6	10	6	480	456	G3/4	G1/2	G1	35,3
BP-10-7	10	7	560	536	G3/4	G1/2	G1	41,2



MODULAR CONNECTION PLATES type EP

- NS 6, 10
- to 350 bar
- Connecting dimensions to ISO 4401, DIN 24340
- Mounting position unrestricted

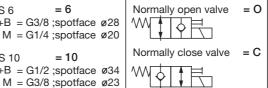
EP - 10 - O


Description

Modular connection plates are used for transmission of hydraulic fluid from its source to hydraulic valves. By using modular connection plates it is simple to realize complete hydraulic circuit and piping is restricted to the connections to the loads only.

Ordering code

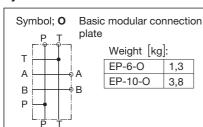
Nominal size

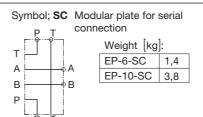

Symbol

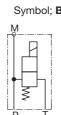
Nominal size

= 6 A+B = G3/8 ;spotface ø28 M = G1/4; spotface ø20 = 10NS 10 A+B = G1/2; spotface Ø34

By - pass valve type

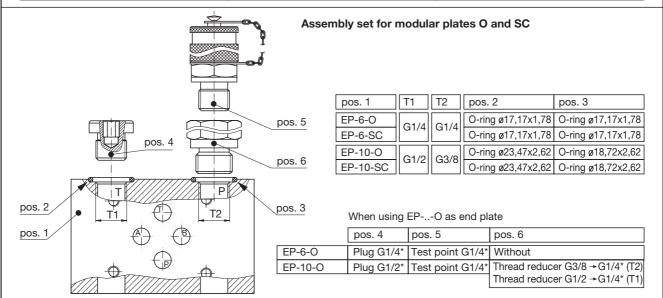



Without by-pass valve = N


Supply voltage

24V DC = 24DC 230V AC = 230AC

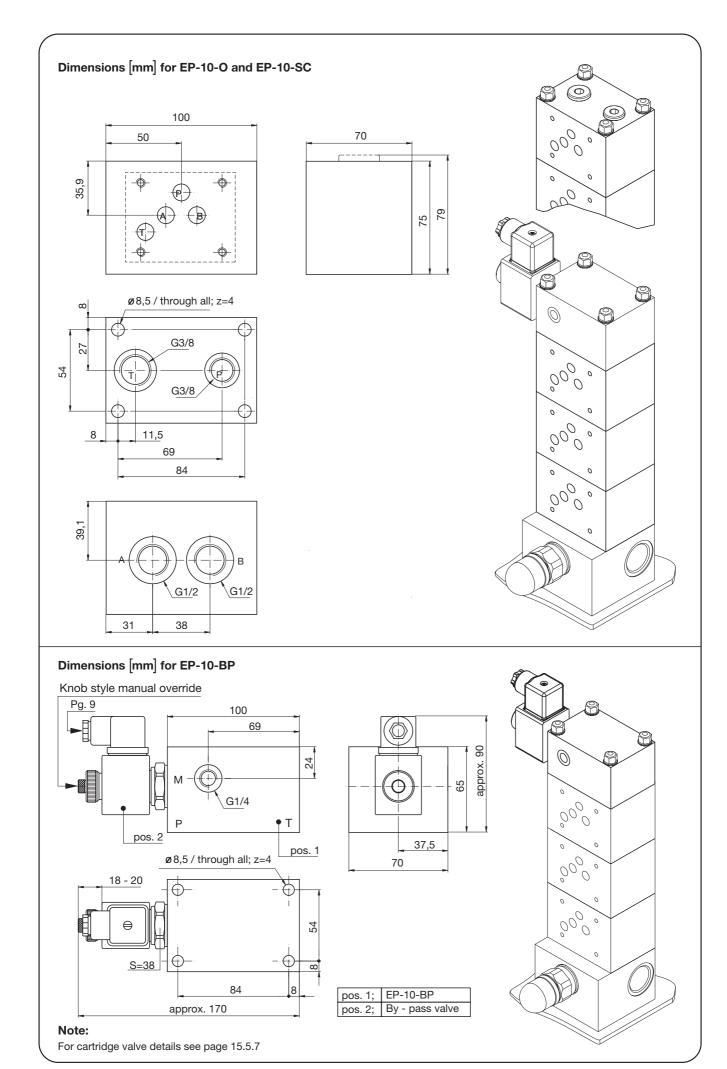
Symbol



Symbol; BP Ending modular plate with by-pass valve Weight [kg]:

EP-6-BP

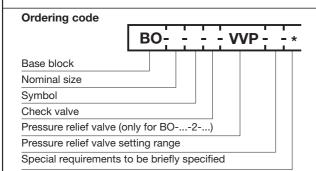

EP-10-BP 2,5 Note: Weight without by-pass valve


1,1

Note:

* Not included! See page 15.5.8

BASE BLOCK type BO


- NS 6, 10
- to 350 bar
- Base block for modular connection plates type EP
- Very low pressure drop due to advanced design and large drilling diameters

BO - 6 - 1

Description

Base block are used for transmission of hydraulic fluid from its source to modular connection plates. Their design allows many different combinations and mounting positions. Two inlet ports allow bottom and side connection. Pressure relief valve is included as protection of the system from overpressure and check valve is used to protect the oil flow back to its source.

Nominal size

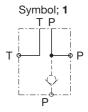
NS 6 = 6P + T= G1/2 ;spotface Ø34

NS 10 = **10** P + T= G1 ;spotface Ø47

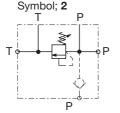
Check valve

Without check valve = no desig.
With check valve = NV

Pressure relief valve setting range


to 400 bar = 400to 200 bar = 200

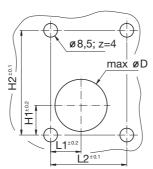
to 100 bar = 100


Important note:

When setting maximal system pressure do not exceed maximum operating pressure 350 bar!

Symbol

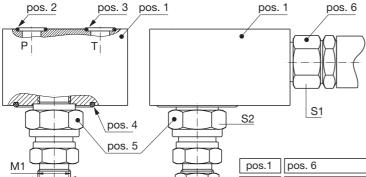
Base block without pressure relief valve


Base block with pressure relief valve

Weight [kg]:

BO-6-2 2,3

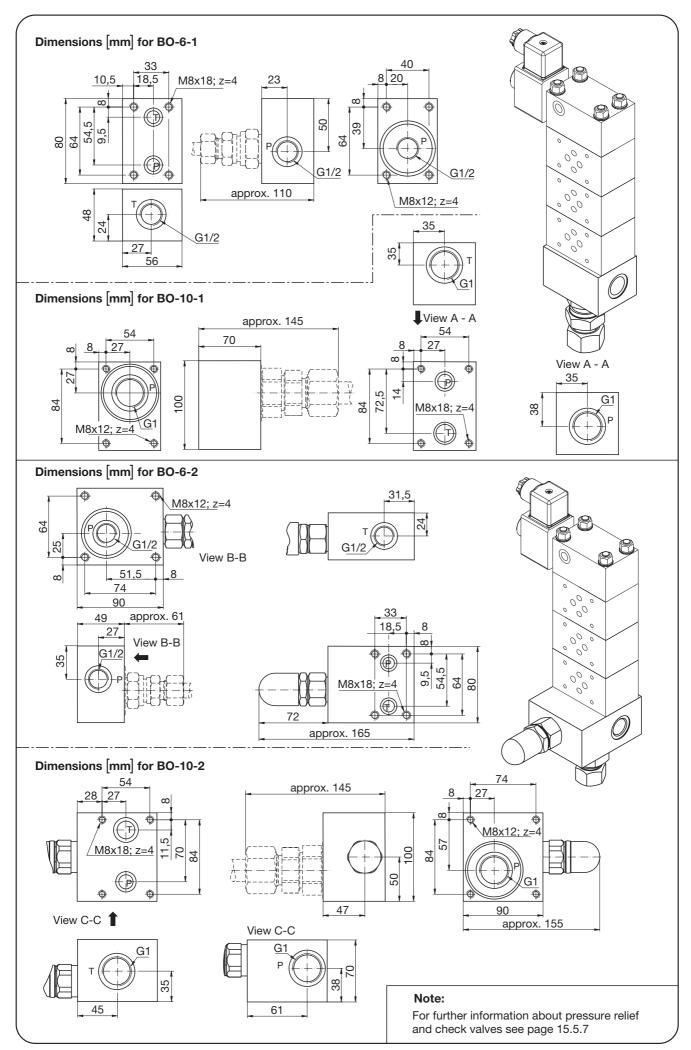
BO-10-2 3,8


Plate cut out

Dimensions [mm]

	BO-6-1	BO-6-2	BO-10-1	BO-10-2
H1	25	22,5	27	27
H2	64	74	84	84
L1	20	25	27	27
L2	40	64	54	74
øD	44	44	58	58

Assembly set for base blocks BO-...-1 and BO-...-2



pos.1	pos. 2	pos. 3		
BO-6-1	O-ring ø17,17x1,78	O-ring ø17,17x1,78		
BO-6-2	0-1111g #17,17x1,70	0 1111g #17,17x1,70		
BO-10-1	O-ring ø18,72x2,62	O-ring @23 47v2 62		
BO-10-2	0-111g #10,72x2,02	0-1111g w23,47 x2,62		
pos.1	pos. 4	pos. 5		
pos.1 BO-6-1		pos. 5 Check valve		
	0-ring ø48X2,5	•		
BO-6-1	O-ring ø48X2,5	Check valve		
BO-6-1 BO-6-2		Check valve for NS 6 stacking		

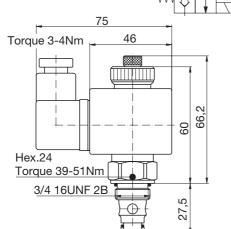
pos.1	pos. 6	S1 [mm]	S2 [mm]	S3 [mm]	øP[mm]	M1 [mm]
BO-6-1	Without	Without	36	32	15	M22x1.5
BO-6-2	Pressure relief valve VVP-6	32	30	32	15	1VIZZX 1,5
BO-10-1	Without	Without	50	46	25	M36x2
BO-10-2	Pressure relief valve VVP-10	36	50	46	∠5	IVI30X2

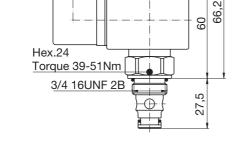
Functional nut and cutting ring are included in delivery!

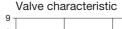
Pipe; øP EO 24° cone end

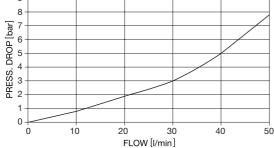

INCLUDED COMPONENTS in EV stacking elements

By - pass valves

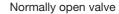

for NS 6 stacking

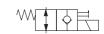

Normally open valve


Maximum pressure: 350 bar Rated flow: 30 I/min Weight: 0,13 kg

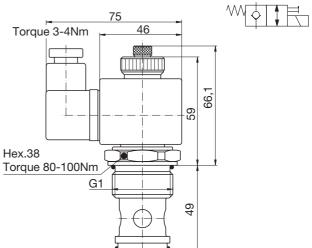


Normally closed valve

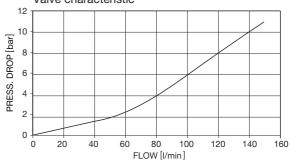


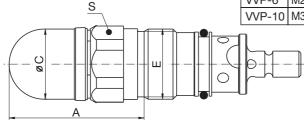


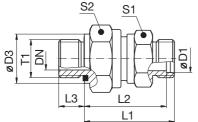
for NS 10 stacking

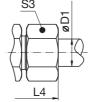

Maximum pressure: 350 bar Rated flow: 150 l/min

Weight: 0,35 kg




Normally closed valve


Pressure relief valves



		E	A [mm]	C [mm]	S [mm]	Weight [kg]	Tight. torque [Nm]
	VVP-6	M28x1,5	72	34	32	0,5	80
	VVP-10	M35x1,5	68	38	36	0,6	140
4							

Check valves

	D1 [mm]	T1	DN [mm]	L1 [mm]	L2 [mm]	L3 [mm]	L4 [mm]
for NS 6 stacking	15	G1/2	11,5	49,5	42,5	14	57,5
for NS 10 stacking	25	G1	19	66,5	54,5	18	78,5

Maximum pressure: 400 bar Cracking pressure:

Functional nut and cutting ring are included in delivery.

4	S1[mm]	S2[mm]	S3[mm]	Weight [kg]	Tight. torque [Nm]
for NS 6 stacking	27	32	27	0,186	85
for NS 10 stacking	46	50	46	0,647	260

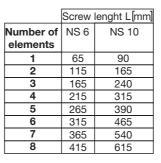
Note:

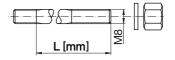
For further information about included components contact Kladivar d.d.

ADDITIONAL COMPONENTS for EV stacking (not included in EV stacking elements)

1/4

Fixing screws

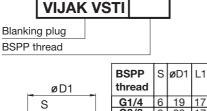

Ordering code

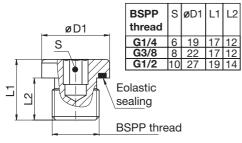


Nominal size

NS 6

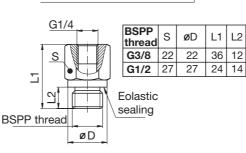
NS 10 = 10

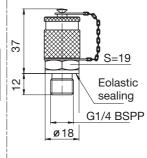



SET - EV consist of:

Screw: M8 DIN 835 10.9 4 pcs. Spring washer: A8 DIN 6798J 4 pcs. M8 DIN 6330 4 pcs. Nut:

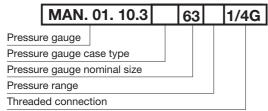
Plugs, test points, thread reducers

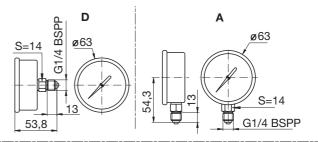

Blanking plugs for ports


Thread reducers **PRIKL RI**

Thread reducers Male stud BSPP thread Female thread BSPP G1/4

Test point with thread connection M16x2


PRIKL MER EMA3/1/4


Pressure gauges

- Bourdon tube pressure gauge, size 63 mm
- Liquid filling and forged brass case
- Accuracy class according to EN 837; ±1,6%
- Threaded connection; G1/4 BSPP

Ordering code

Pressure gauge case type

Pressure range

0 to 60 bar 0 - 60 0 to 100 bar 0 - 100 = 0 to 160 bar 0 - 160 0 to 250 bar 0 - 2500 to 400 bar 0 - 400

Gauge isolator valves

- Used to protect pressure gauge
- Suitable for pressure up to 400 bar

Ordering code

PIPA MAN.

Gauge isolator valve

Gauge isolator valve type

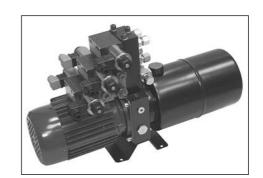
* Tightness can only be achieved by liquid or plastic sealing aids.

Gauge isolator valve type

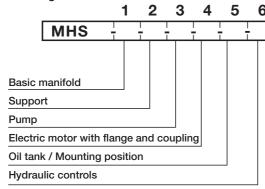
FT 290 Internal thread G1/4 ISO 1179-1 BSPP Ø34 2 \Box S=18 53 ISO7 R1/4* 13 61,5

Note:

For further information about additional components contact Kladivar d.d.

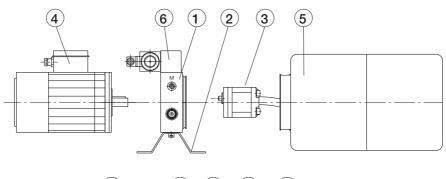


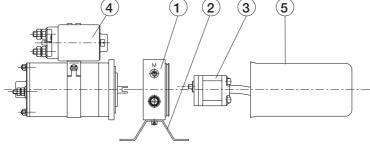
MINI HYDRAULIC POWER PACKS, type MHS


Compact modular design allows wide spectrum of different applications with minimal power pack dimensions. Mini hydraulic power packs are assembled from standard components that are kept on stock. Therefore quick delivery and competitive price is assured.

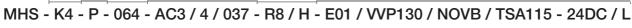
Most often applications are: tippers, loading truck sides, work tables, lifting scaffolding, elevators, presses, small industrial machines, etc.

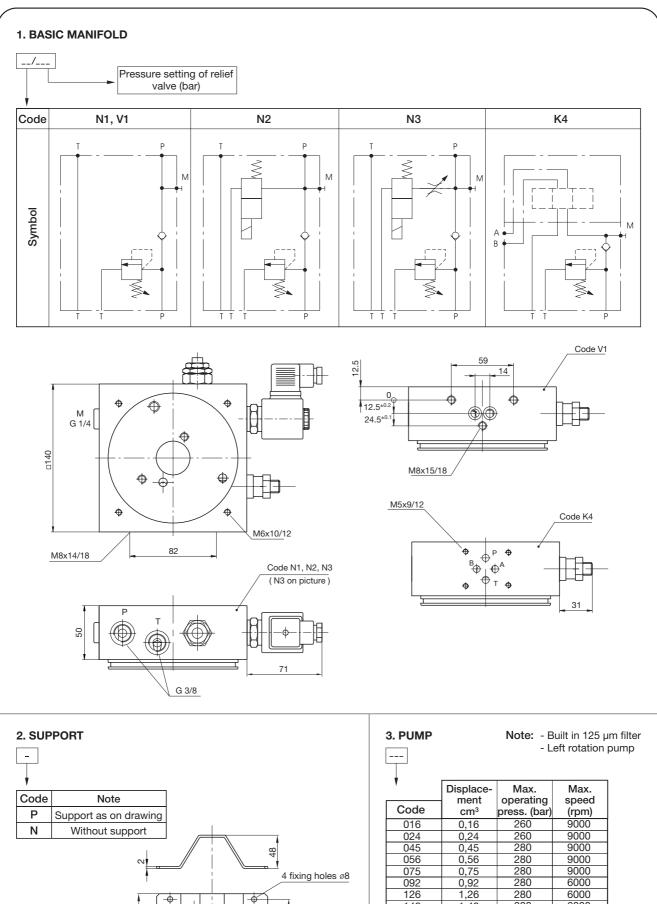
Main components are: basic manifold with relief valve and check valve, electric motor, pump with suction strainer, tank and hydraulic controls in five different designs.

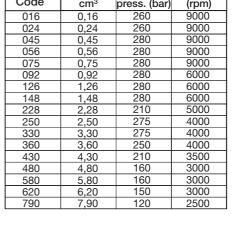



Ordering code

Technical data


Mounting position	horizontal, vertical		
Fixing	thread 2xM8 or support		
Threaded connections	G 3/8		
Pump type	gear pump		
Pump displacement	0,16 - 7,9 ccm/rev		
Working pressure	see page 30.1.2 (3. PUMP)		
Fluid type	mineral oil HL or HLP (DIN 51524); quick degra-		
	dable oil HETG, HESS or HEPG (VDMA 24568		
	and ISO 15380)		
Electric motor	AC or DC		
Supply voltage	12V DC, 24 DC, 230V AC, 230/400V AC		
Motor power	AC to 3kW, DC to 2kW		



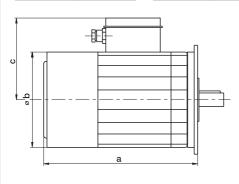


Order specification example:

140

124

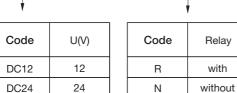
12[']1

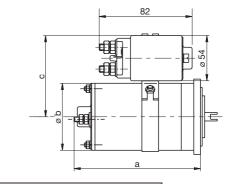

4. ELECTRIC MOTOR WITH FLANGE AND COUPLING

AC motors

Code	No. of phases
AC3	3
AC1	1

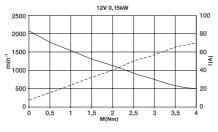
Code	min ⁻¹
4	1500
2	3000

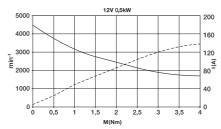


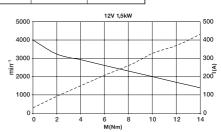

Code = P (kW)			Size	Dimen	sions		
AC 3/4	AC 3/2	AC 1/4	AC 1/2	(IEC)	а	b	С
/	0,18	/	/	00	004		0.5
0,18	0,25	/	/	63	204	125	95
0,25	0,37	0,18	0,25	74	000	148	115
0,37	0,55	0,25	0,37	71	233		
0,55	0,75	0,37	0,55	80	249	170	126
0,75	1,1	0,55	0,75	00			
1,1	1,5	0,75	1,1	90	000	185	142
1,5	2,2	1,1	1,5	90	262	100	142
2,2	3	1,5	2,2	100	316	210	155
3	/	/	/	100	310	210	133

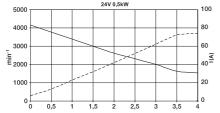
Note:

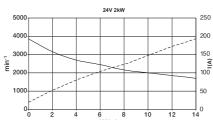
- \star AC motors 50 Hz; 230/400V three phases; 230V one phase.
- * Starting torque of single phase motors is aproxim. 50% lower than nominal torque.
- Dimension a includes special flange for fixing electric motor to basic manifold.

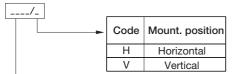

DC motors

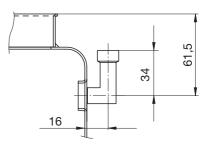




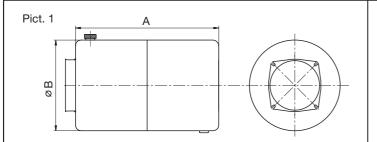

Code = P (kW)		Dimensions			
DC12	DC24	а	b	С	
0,15		150	90	100	
0,5	0,5	158	80	102	
1,5	2	188	112	118	


Code = X; Power to be selected by supplier.

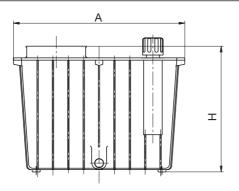


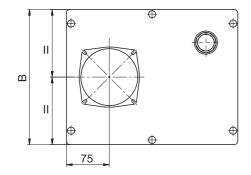

mii	1 ⁻¹ ————
I(A))

5. OIL TANK / MOUNTING POSITION

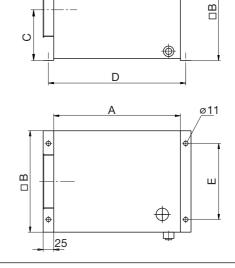


Note: Vertical mounting position is not available for R1.5, R2.5, and RC type.

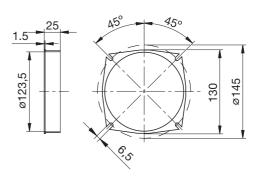

Code	Vol. (I)	Α	В	С	D	E	Pict.
R1,5	1,5	150	130	/	/	/	1
R2,5	2,5	235	130	/	/	/	1
R5	5	295	174	/	/	/	1
R8	8	419	174	/	/	/	1
R10	10	262	224	/	/	/	1
R12	12	380	224	/	/	/	1
RV10	10	280	200	100	305	160	2
RV16	16	300	240	110	325	180	2
RC6	6	280	200	206	210	130	3
RC10	10	340	247	250	250	170	3
RC16	16	368	290	275	270	192	3
RC25	25	490	340	317	326	176	3



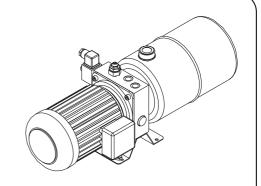
Tank inlet for vertical position.

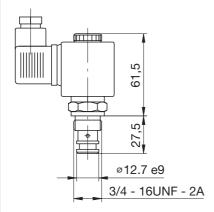


Pict. 3

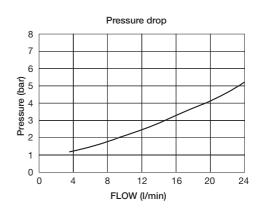


Flange




6. HYDRAULIC CONTROLS

6.1 HYDRAULIC CONTROLS FOR BASIC MANIFOLDS N2 AND N3



Code	Symbol	Code	Symbol
А	A	В	A B
С	A	D	A B

Max. operating pressure 350 bar flow rate 30 l/min

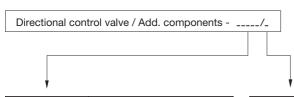
6.2 HYDRAULIC CONTROLS FOR BASIC MANIFOLDS K4 AND V1 6.2.1 DIRECTIONAL CONTROL VALVES

Add. components - Solenoid supply voltage

Code	Symbol	Code	Symbol
E51A	a a b b T	R51A	a A B Wb
E02A	a A B W o	R02A	a A B O T
E01	a A B b b b	R01	$\begin{array}{c c} & & & \\ & & & \\ \end{array} \begin{array}{c} A \\ & & \\ \end{array} \begin{array}{c} A \\ & \\ \end{array} \begin{array}{c} A $
E02	a A B B B B B B B B B B B B B B B B B B	R02	a A B W b
E03	a P T D D D	R03	a A D D T D D D D D D D D D D D D D D D D
E06	a A B b b b b	R06	a A A B B B B B B B B B B B B B B B B B

Code	Symbol
BVA	A TOTAL PARTY OF THE PARTY OF T
BVB	T T

Note: BVA and BVB are by-pass valves for basic manifold V1.


6.2.2 ADDITIONAL COMPONENTS

Directional control valve /_____ - Solenoid supply voltage (see 6.2.3)

Note: X, Y = pressure setting of component (bar); all components are optional

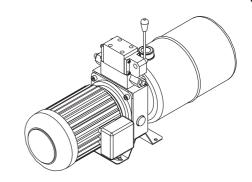
Other components								
(Check valve Throttle / check valve		Pres	ssure relief valve	Pressure switch			
Code	Symbol Description	Code	Symbol Description	Code	Symbol Description	Code	Connected to	
	B1 B				В1В	One s	switch	
	A1 A				A1 A1	TSAx	А	
NOVD				VVPx		TSBx	В	
	P1 P T1 T VP-NOV-6-D				P1 P T1 T VP-RT-6-EP	TSPx	Р	
	В1 В		В1 В		B1B	Two sv	witches	
		2			A1 A	TSAxBy	A, B	
NOVA	A1 A	NDV	P1 P T T VP-NDV-6-P	VVAx	P1 P T1	TSAxPy	A, P	
	P1 P					TSBxPy	B, P	
	VP-NOV-6-AE			VP-NDV-6-P	VP-NDV-6-P	VP-RT-6-AE	TSAxAy	A, A
	В1 В						B1 B	TSBxBy
	A1 A				VVBx	TSPxPy	P, P	
NOVB				VVBx		Sym	nbol	
	P1				P1 P T1 T VP-RT-6-EB	- <u>x</u> -		
Note:	phoical datails of compa	opents (are presented	VVAxBy	B1 B B A1 A A A A A A A A A A A A A A A			
All other ted in Kladivar'	chnical details of comp s catalogue "Hydraulic	onents a s".	are presented		VP-RT-6-D			

6.2.3 SOLENOID SUPPLY VOLTAGE

Code	Supply voltage
12DC	12V DC
24DC	24V DC
110AC	110V AC
230AC	230V AC

Code	Signal lamp				
L	with				
N	without				

Note:


Plug-in connectors are enclosed.

BASIC MANIFOLD K4

Vertical stacking of one directional control valve with additional componets.

Ordering code

Directional control valve (1.1) / Additional components (1.2/1.3...) - Solenoid supply voltage.

Example for K4

1	1.1	E01	1.2	VVP130	1.3	NOVB	1.4	TSA115	1.5	
Pos.	Direct control		Additional components							

Ordering example:


E01 / VVP130 / NOVB / TSA115 / ... - 24DC / L

BASIC MANIFOLD V1

Horizontal and vertical stacking up to four directional control valves with additional components.

Ordering code

Directional control valve (1.1) / Additional components (1.2/1.3...) - Directional control valve (2.1) / Additional components (2.2/2.3...) - Solenoid supply voltage.

Example for V1

4	4.1		4.2		4.3		4.4		4.5	
3	3.1		3.2		3.3		3.4		3.5	
1	2.1	E03	2.2	VVP130	2.3	NOVB	2.4		2.5	
1	1.1	E01	1.2	VVP130	1.3	NOVB	1.4	TSA115	1.5	
Pos.	Directional control valve		Additional components							

Note: First row (pos. 1) is nearest to the basic manifold.

Ordering example:

E01 / VVP130 / NOVB / TSA115 / ... - E03 / VVP130 / NOVB / ...-... / ... / ... - 24DC / N

7. Other requirements

Other requirements should be described in writing, hydraulic circuit or drawing.

KLADIVAR Žiri, tovarna elementov za fluidno tehniko, d.d. Industrijska ulica 2 SI - 4226 ŽIRI, SLOVENIJA tel.: ++386 (0)4 5159 100 fax: ++386 (0)4 5192 234 ©KLADIVAR iri, 2005, ADV - Studio GO/Tisk: Tisk Žnidarič E-mail: info@kladivar.si http://www.kladivar.si Certified ISO 9001 : 2000 by Certified ISO 14001 by Certified OHSAS 18001 by EVAi EVAi